
Craig A. Lindley's

Micro Controller Projects

Volume 1

The Amazing ESP-8266

Craig A. Lindley

Black Forest, Colorado, USA

Important Notes

Please do not give away copies of these articles and/or code to
other people. The meager amount of money I make on this
download will be used to finance new projects that I will design
and build and publish in the future.

There are absolutely no guarantees about the projects
published in this document. I can verify that the projects did
work when the articles were originally written but things in
technology change at a lightning pace. Development tools
change, libraries on which the projects' depend change and all
of this is outside of my control. I do, however, believe if you are
a relatively competent electronic enthusiast / programmer all
of the these projects can be made to work with a little bit of
effort.

Product support is not included in the purchase of this
document. Support is available, however, on a contract basis.
Please email calhjh@gmail.com for more information.

You are free to use code from these articles in any way you
want including commercial products, but you are not allowed
to use my name to endorse anything you do.

Republication of any part of this document is strictly prohibited
without prior written permission from Craig A. Lindley, the
author.

The complete contents of this document and the accompanying
software / code are Copyright 2017, 2018 by Craig A. Lindley,
All Rights Reserved.

Who Am I
My name is Craig A. Lindley and I am a consummate tinkerer, maker, beer brewer and musician from
Black Forest, Colorado. I have a BSEE degree in electronic engineering from Cal Poly, Pomona,
California. My love of micro controllers / micro processors began around 1976 when I built my first
S100 bus computer using the Signetics 2650 micro processor. Shortly after that I got a job at Jet
Propulsion Laboratory (JPL) where I honed my hardware and software skills working on the central
data system for the Galileo spacecraft. My name was actually etched onto the gold record which flew to
Jupiter on Galileo and orbited the planet before plunging to its death into the planet. Since that time I
have worked for many large tech firms including: IBM, Sun Microsystems, HP, Rolm and TRW
sometimes as a hardware engineer and sometimes as a programmer. I even had my own company,
Enhanced Data Technologies, for many years before returning to private industry. Late in my career I
spent time writing large Java Enterprise applications for numerous startup companies. I returned to the
embedded world after I retired from industry and since then I have written extensively about any aspect
of micro computers that caught my attention / interest. I have over 75 publications to date including 5
books (or 6 if you include what you are now reading). My books include:

"TRS-80/Z80 Assembly Language Library", published by Wayne Green Publishing, Inc.,
Peterborough, New Hampshire. ISBN 0-88006-060-3. 1983.

"Practical Image Processing in C" published by John Wiley and Sons, Inc. in November of
1990. ISBN 0-471-54377-2. This book has been translated into Chinese, Korean and Russian.

"Practical Ray Tracing in C" published by John Wiley and Sons, Inc. in November of 1992.
ISBN 0-471-57301-9.

“Photographic Imaging Techniques in C++ for Windows and Windows NT”, published by John
Wiley and Sons, Inc. in November of 1995. ISBN 0-471-11568-1.

“Digital Audio with Java” published by Prentice-Hall in January of 2000. ISBN 0-13-087676

Information about all of my publications can be found at: http://craigandheather.net/cwripage.html.

I also hold five US patents in various aspects of computer engineering.

What's in this Document?
Most chapters of this document are articles I have previously published. Most of these articles were
originally published by Nuts and Volts magazine and permission has been obtained for republication. I
have chosen these articles for inclusion because they have generated the most email from Nuts and
Volts readers or have been the most downloaded from my website: http://craigandheather.net. I have
also included some new unpublished construction articles and other material which I call snippets.
Snippets are not full construction articles but rather experiments or proofs of concepts that I thought
would be of interest. All of the code that goes along with the articles in this document is also provided.

This is volume one in a series of PDF documents that deals specifically with projects for the ESP8266
family of micro controller devices. Future volumes will feature articles I have written about the
Raspberry Pi and Teensy micro controller devices. A possible additional document may cover articles
that don't fit neatly into the micro controller organization of the documents described above.

Introduction
There is something fun and amazing about conceptualizing an electronic device and then setting out to
design and build it. There are always frustrations along the way but once it works there is really a sense
of pride and accomplishment. Building projects designed by others also has its own rewards. Being
able to say, “I made that” when asked about something you have built it is very fulfilling. This is
especially true when the projects you build fill some need you have. You can probably buy most of the
project devices I talk about in this document but why would you if you can build it yourself and
probably save substantial money in the process.

That being said, not everyone has the ability to build these projects by themselves. The ability to run a
personal computer, basic programming skills, the ability to read schematics, the ability to solder,
determination, curiosity and self motivation are all required to make these projects work. If you lack
any of these skills but wish to pursue these projects find someone who can help you. Find a friend or
join a MakerSpace and you will have access to all of the skills and tools needed. Even your local
library may have facilities that can help you with these projects. I know I was surprised to find out that
my local library had a laser cutter machine which I used for one of the projects in this document.

In addition to required skills, you will need the Arduino Integrated Development Environment or IDE
(see https://www.arduino.cc/en/Main/Software) to take the code presented in these articles and program
the ESP8266 module on which all of these projects are based. Within the IDE you can edit the provided
code, compile it over and over until it is error free and then upload the finished code it to ESP8266.
You can also used the Serial Monitor from the IDE for inspecting the values of program variables to
help you debug the code when things aren't working correctly.

There are many versions of the Arduino IDE available but I recommend always using the latest
version. I used version 1.8.0 for macOS for most code development but you can develop on the latest
version for Windows as well. Version 1.8.0 was the current version at the time of writing but maybe an
out of date version in the future when you try and build one of these projects. For the most part newer
versions of the IDE are backwards compatible with older versions but some tweaks to the code may be
necessary to get the provided code to compile cleanly.

Before being able to compile the provided code you will need to install the ESP8266/Arduino libraries
into the Arduino IDE. Instruction for how this is done are available at:
https://github.com/esp8266/Arduino.

Speaking of libraries; many of the projects in this document make use of third party libraries for their
operation. The libraries I used for development are include with the project code and should be used.
Older or newer versions of these libraries may not function correctly. It is important to note that if you
install a library while the Arduino IDE is running you have to exit the IDE and restart it for the library
to be recognized. General instructions for installing Arduino libraries are available at:
https://www.arduino.cc/en/Guide/Libraries.

With the Arduino IDE all setup and all required libraries installed, make sure you select a board type
from the Tools menu that corresponds to the version of ESP8266 your are using in your project. Most
projects in this document use the NodeMCU 1.0 (ESP-12E Module) board type. Most projects can use
either a CPU Frequency, also settable from the Arduino Tools menu, of 80 or 160 MHz.

If you have trouble compiling the code for any of these projects you may have to use your
programming skills and determination to figure out why. If there are undefined item errors you may
have forgot to install a required library or the library you are trying to use is the wrong version. Try not
to get frustrated because it is usually a simple thing that is causing you problems. You may be
presented with a hundred compilation errors that are all caused by a single, simple typing mistake.

So say you get your Arduino setup correctly and you have loaded the project code and compiled it
correctly without error and uploaded it to your ESP8266 without error but it doesn't work or doesn't
work as expected. What do you do? First thing to do would be to check and double check the project's
electrical wiring. Maybe use a magnifying lamp to make sure you have connected to the proper pins of
the ESP8266 since the labels are rather small and sometimes overlapping. Next, check the power
supply you are using to power your project when you are absolutely sure the circuit is correctly wired. I
cannot tell you how many times I have under estimated the current requirements of a project and used
an inadequate power supply which caused my project to malfunction, sometimes intermittently. When
all else fails, insert Serial.print, Serial.println and/or Serial.printf statements in the code at key location
outputting the values of key variables and use the Serial Monitor in the IDE to monitor them at
runtime. This is a rather crude debugging technique but it is all you got in the Arduino IDE and I use it
all of the time.

Parts Suppliers
Finding the required parts for projects can sometimes be a problem. Luckily there are many vendors
available that combined carry anything you might need. Suppliers I have used include:

Supplier Website

Digi-Key Electronics Corporation www.digikey.com

Adafruit www.adafruit.com

SparkFun www.sparkfun.com

RadioShack www.radioshack.com

Parts Express www.parts-express.com

Newark, MCM Electronics, element14 www.newark.com/mcm-partnership

eBay www.ebay.com

Jameco Electronics www.jameco.com

Supplier Website

Mouser Electronics www.mouser.com

Electrodragon www.electrodragon.com

NodeMCU Amica Pinout Diagram
Since most of the projects in this document use the NodeMCU Amica ESP8266-12 module from
electrodragon.com, I've included this pinout diagram for reference.

Table of Contents
Important Notes..2
Who Am I...3
What's in this Document?..4
Introduction..4
Parts Suppliers..5
NodeMCU Amica Pinout Diagram..6
Chapter One – A Tiny, WiFi Enabled, Arduino Compatible Micro Controller.....................................11

Introduction...11
Hardware...11
Prototyping Hardware...12
Arduino IDE Version 1.6.4...13
Software...14
Teleduino...15
Conclusions...16
Resources...16

Chapter Two - NTP Clock...23
Introduction...23
Hardware...24
Software...26

User Configuration of the NTP Clock Software...28
NTP Clock Operation..29
Resources...30

Chapter Three - Weather Clock...35
Introduction...35
Hardware...36
Software...37

User Configuration of the Weather Clock Software...38
Weather Clock Operation..39
Conclusions...42
Resources...42

Chapter Four - World Clock..53
Introduction...53
Hardware...54
Software...55

User Configuration of the World Clock Software..57
World Clock Operation...57
Timezones, Timezones, Timezones..58
Conclusions...59
Resources...59

Chapter Five - Nixie Tube Clock...67
Introduction...67
Clock Operation..67
Hardware...68

Software...70
Packaging..72
Conclusions...73

Chapter Six - RSS News Reader..85
Introduction...85
Hardware...86
Software...87
RSS News Reader Software Operation...89
Conclusions...92
Resources...92

Chapter Seven - NeoPixel LED Tree ..97
Introduction...97
Laser Cutting Tree Pieces..97
The Electronics..99
Building The Tree...100
Tree Software..101
Remotely Controlling The Tree..102
Final Thoughts...102
Resources...103

Chapter Eight - Thinking Of You..117
Introduction...117
Hardware...118
Configuration...119
Software...120
How Things Work...121
Packaging the ToY Device..122
Conclusions...123
Resources...123

Chapter Nine - WiFi Robot and Robot Controller...133
Introduction...133
The Robot Controller...134

Hardware...135
Software..136

The Robot..138
Hardware...138
Software..139

Conclusions...140
Chapter Ten – NeoPixel LED NTP Clock...151

Introduction...151
Clock Operation..151
Hardware...152
Software...153
Conclusions...154

Snippet #1 ESP8266 & VS1053B Internet Radio..163
Introduction...163
Hardware...163
Software...164
Conclusions...167

Snippet #2 ESP8266 & VS1053B MIDI ...171

Introduction...171
Hardware...171
Software...172
Conclusions...175

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

Chapter One – A Tiny, WiFi Enabled, Arduino Compatible Micro Controller

Introduction

It is not very often that a new piece of hardware comes along and immediately captures the attention of
the entire maker community. The Raspberry Pi and the $9 C.H.I.P. are a couple of recent examples but
the ESP8266 module from Expressif Systems (expressif.com) wins this prize. This little board (see
Photo One) is only about the size of a nickel yet contains a powerful 32 bit micro controller and a WiFi
interface and can be purchased for around $4 in single unit quantities.

The first projects built with this module all used a micro controller to control the ESP8266 as a WiFi
peripheral using an AT command set over a serial interface. While this was made to work, some of the
projects suffered from stability problems as the ESP8266 firmware continued to evolve. Lately
however, a group of enterprising individuals have made the ESP8266 Arduino compatible. This is
important for numerous reasons:

1. It allows people familiar with the Arduino IDE to develop software for the ESP8266 module.
2. It allows the software developed in the Arduino IDE to be run directly on the 32 bit micro

controller on the ESP8266 module eliminating the need in many cases for a separate micro
controller altogether.

3. It allows the use of numerous third party Arduino libraries as long as they don't depend on
direct access to the underlying AVR hardware.

Arduino compatibility and the low cost of the ESP8266 is a major development for the Internet of
Things (IoT) movement currently sweeping the tech world. Using the ESP8266 allows for very small
and inexpensive products to be created that can be controlled and/or monitored remotely. Note if you
plan on putting an ESP8266 module into a commercial product you will have to pass FCC certification
which can take considerable time and be rather costly.

To understand what a breakthrough this is, consider the cost and size of a traditional Arduino approach
to WiFi enabled monitoring and control. First you have to have an Arduino board say an Arduino Uno
from a reputable source which costs between $20 - $30. Then you have to purchase a WiFi Shield for
around $20 - $40 bringing basic system cost to between $40 - $70. Then consider size. The Uno's
dimensions are 2.1” x 2.7”. Attach the WiFi shield and the sandwich is between 1.25” to 1.75” deep
and a bit harder to package then the ESP8266 which is the size of a nickel.

Finally when you consider the ESP8622 has a 32 bit processor which can run at 160 MHz, 10x the
speed of the Uno's 8 bit processor, and that it has 512K (minimum) of flash memory program space to
the Uno's 32K , the Uno Wifi solution is looking a little dated.

Hardware

Actually the ESP8266 is a whole family of modules which vary in the number of available I/O pins, the
amount of onboard memory, the types of interfaces available and in how the RF antenna is

Page 11

Chapter One – A Tiny, WiFi Enabled, Arduino Compatible Micro Controller

attached/implemented. The module I will be describing in this article (and shown in Photos One and
Two) is referred to as an ESP-01. This module has its RF antenna etched directly onto the circuit board.

Information on the whole family of ESP8266 devices is available here:
http://www.esp8266.com/wiki/doku.php?id=esp8266-module-family.

The following attributes of the ESP8266 family were extracted from the data sheet available at:
https://nurdspace.nl/File:ESP8266_Specifications_English.pdf.

• 802.11 b / g / n
• Wi-Fi Direct (P2P), soft-AP
• Built-in TCP / IP protocol stack
• 802.11b mode + 19.5dBm output power
• Built-in temperature sensor
• Supports antenna diversity
• Off leakage current is less than 10uA
• Built-in low-power 32-bit CPU which can double as an application processor
• SDIO 2.0, SPI, UART , ADC
• Standby power consumption of less than 1.0mW (DTIM3)

In other words, the ESP8266 family of modules features low power consumption, high RF power
output and is capable of supporting all of the current 802.11 standards required for WiFi connectivity.
In addition, it supports many industry standard hardware interfaces and can function as the application
processor in many designs. Note: the ESP8266 is a 3.3 VDC part.

Prototyping Hardware

Now that we know something about the ESP8266 module family let's talk about what we need in terms
of hardware to try out the ESP8266 in the Arduino environment. In addition to the ESP8266 ESP-01
module we need some sort of USB to TTL Serial adapter, a 3.3 VDC power supply capable of at least
250 mA of output current, a couple of momentary push button switches, an LED, a 1K and a 10K ohm
resistor. Do not skimp on the power supply for the ESP8266. It requires quite a bit of current and lack
of sufficient current will cause the ESP8266 to appear flakey or not work at all.

When I received my ESP8266 modules in the mail I was anxious to try them out but I didn't yet have
the required USB to TTL 3.3V serial interface cable to proceed. Since necessity is the mother of
invention and since I am not known for being a patient person, I decided to use an Arduino Uno board I
had for this purpose. Note, I removed the processor from the Uno as it was not needed. The breadboard
is shown in Photo Four and the Fritzing schematic in Figure One. Here, the 5V output of the Uno was
used to drive a small switching mode power supply set to 3.3 VDC which in turn drives the ESP8266.
The Tx and Rx signal from the Uno were connected directly to the Tx and Rx connections on the
ESP8266. Yes Tx to Tx and Rx to Rx. I should point out that the ESP8266 is a 3.3V part and that
direct connection to the 5V logic levels of the Uno should be avoided. With that being said, this
prototype worked perfectly. I have since heard the ESP8266 has 5V tolerant pins but I have yet to have

Page 12

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

that claim substantiated. Anyway, I figured I only had a few bucks tied up in the ESP8266 part so if it
blew, oh well. As it turned out, this prototype worked splendidly.

The Reset push button on the prototype pulls the Reset pin on the ESP8266 low thereby reseting the
device. The Flash push button grounds the GPIO0 pin which places the ESP8266 into firmware
download mode. The CH_PD line must be pulled high for new firmware to be downloaded.

After my 3.3V USB to TTL serial cable arrived, I removed the Uno from the prototype and connected
the cable directly to the ESP8266. This approach is shown in Photo Five and schematic in Figure Two.
Here the cable provides 5VDC on the VCC pin which is connected to the 3.3VDC power supply. The
Tx and Rx pins of the cable are at the proper 3.3V interface levels. The Tx pin of the cable is connected
to the Rx pin of the ESP8266 and the Rx pin of the cable connects to the Tx pin of the ESP8266. I also
added an LED and 1K resistor connected between ground and GPIO2 which will be used with
Teleduino demo described later.

In either case the following series of steps must be followed to initiate successful loading of code from
the Arduino IDE into the ESP8266 module.

1. Press and hold the reset button down
2. While holding the reset button down, press and hold the flash button.
3. Release the reset button while still holding the flash button down.
4. Click the Upload button in the Arduino IDE.
5. When the sketch starts to load, you can release the flash button.

Once code is successfully uploaded to the ESP8266 it will be executed every time a power up or a reset
occurs.

Arduino IDE Version 1.6.4

To easily program the ESP8266 as an Arduino you must use the latest version of the Arduino IDE. As
of this writing that is version 1.6.4. This version has a feature called the board manager which lets
third party vendors add support for their Arduino compatibles that the makers of the IDE don't support
directly. Adding support for the ESP8266 is a multi-step process.

1. First, you must download version 1.6.4 or newer version of the IDE from
http://www.arduino.cc/en/Main/Software and install it. There are versions available for
Windows, Mac OS X and Linux. The installation process is different for each platform but in
each case is pretty straightforward. Follow the directions provided within the installation
programs and you should be good to go.

2. Next bring up the Preferences page of the IDE and type
http://arduino.esp8266.com/package_esp8266com_index.json into the Additional Boards
Manager URLs field. With this completed click OK.

3. Next go to the Tools menu tab in the IDE and click Board and then Boards Manager. This will
bring up a list of installable items. Scroll down and you should see esp8266 by the ESP8266
Community. Highlight this entry and an Install button should appear. Click this button to

Page 13

Chapter One – A Tiny, WiFi Enabled, Arduino Compatible Micro Controller

install the ESP8266 development software. This can take awhile because a lot of software is
being transferred to your computer.

Once this process has been completed, the next time you click the Tools menu and then the Board entry
you should be able to select the “Generic ESP8266 Module”. You are now ready to program your
ESP8266 as an Arduino. Make sure you make this selection for all of your projects which utilize the
ESP8266 module. In addition, make sure you have a serial port selected in the IDE so the Serial
Monitor can be used. If an appropriate serial port does not show up in the IDE you may have to install a
driver for the USB Serial cable you are trying to use.

Software

With either variety of prototyping hardware in place and the Arduino IDE updated with ESP8266
support you are now ready to go. Right out of the box you have access to numerous example programs
which illustrate some of the ESP8266 modules' capabilities. If you go to File and then Examples in the
IDE you will see these three categories of example programs:

ESP8266mDNS
ESP8266WebServer
ESP8266WiFi

and each of these have one or more example sketches within them. Within the ESP8266WiFi category,
for example, the following sketches are of special interest:

1. NTPClient - which shows how to get the time from a Network Time Protocol (NTP) server
while demonstrating the use of UDP packets. This is the same technique your computer uses to
set its time automatically.

2. WifiClient – which shows how to use the ESP8266 to talk across the Internet (as a client
program) to a server. All client applications will resemble this example program including the
Teleduino client discussed shortly.

3. WifiScan – which lists all of the wireless networks within range of the ESP8266. The network's
name, signal strength and whether or not the network is encrypted is displayed on the Serial
Monitor. The list of networks is updated every five seconds.

4. WiFiWebServer – shows how to use the ESP8266 as an HTTP type server. By locally accessing
this web server with a browser, an LED connected to the ESP8266 can be toggled off and on.
See the example sketch for more information.

Many of these example programs/sketches must be edited before running as you must enter the SSID of
your wireless network along with your network's password. Without this information the ESP8266 will
not be able to connect to your wireless network and the example programs will fail.

You may be wondering how much of the Arduino software environment has been ported to the
ESP8266 and in truth the answer is quite a lot. A list of what is working is available at:
https://github.com/esp8266/Arduino. This list is definitive as these are the people who did/are doing the
Arduino port.

Page 14

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

Teleduino

Using the ESP8266 to control an LED or some other device on your local area wireless network is cool
but somewhat limiting. What if you want to control your device from anywhere in the world instead?
There are multiple ways of doing this some of which require configuring your modem/router to
forward messages through your firewall opening up the possibility of security breeches. Nathan
Kennedy of KennedyTechnology.com has come up with a better idea that he calls Teleduino.
Teleduino is designed primarily for use with an Arduino with a wired Ethernet shield and there are
versions available for Uno and Mega based boards. I was interested to see if I could port some of the
Teleduino functionality onto the ESP8266 as an experiment and with Nathan's help I did so. Please see
www.teleduino.org for the details. If you are interested in the full Teleduino functionality on the
ESP8266 you will have to wait for Nathan to port the complete code base. If however you want to
experiment yourself you can grab my code (ESP8266_TeleduinoClient.ino) provided with the
document.

To use the Teleduino code you must first go to: https://www.teleduino.org/tools/request-key and
request a an API key. A key will be emailed to you after you provide your name and email address. A
key is a long string of hex characters which must be edited into the ESP8266_TeleduinoClient sketch
along with your WiFi networks' SSID and password before downloading into the ESP8266. The API
key must also be used in all API calls from your browser.

Once the sketch is downloaded into the ESP8266 it will first make a connection to your WiFi network
and then it will open a TCP connection to the Teleduino server. Once this connection is made, the
ESP8266 will authenticate itself to the server by providing the API key. If you bring up the Serial
Monitor you will be able to watch this interaction take place. If all goes well the Teleduino server will
begin sending ping messages to the ESP8266 about every 5 seconds. Because the ESP8266 establishes
an outgoing connection to the Teleduino server there is no need to open any ports in your firewall and
thus create any new security concerns for your network.

To summarize: once the ESP8266_TeleduinoClient is configured, it automatically connects itself to the
Teleduino server when powered up. The Teleduino server translates instructions received over the
internet into actions on the Teleduino device which in this case is the ESP8266.

As mentioned I ported only a (very small) subset of Teleduino functionality. In fact the
ESP8266_TeleduinoClient sketch only recognizes a setDigitalOutput API call but that is enough to
prove the concept workable. On the second prototype shown in Photo Five I have connected an LED to
the ESP8266's GPIO2 pin through a 1K ohm resistor to ground. If I go to my browser and type in the
following rather long URL:

https://us01.proxy.teleduino.org/api/1.0/328.php?k=<YOUR KEY GOES
HERE>&r=setDigitalOutput&pin=2&output=1&expire_time=0&save=0

the LED will turn on. If I try this again but change output=0, the LED will turn off.

Keep in mind that for this demo the ESP8266 is turning an LED off and on by way of commands

Page 15

Chapter One – A Tiny, WiFi Enabled, Arduino Compatible Micro Controller

entered into a browser which can be located anywhere in the world. If instead of an LED connected to
the ESP8266 you connected a solid state relay (SSR) you could control devices such as a light, a heater,
an alarm system, etc. The possibilities are endless.

Want to control your Teleduino device from your Android smart phone or tablet? Checkout apps like
Teleduino Controller Pro V2 in the Google Play store.

Conclusions

This article doesn't begin to describe the cool things that can be done using the ESP8266. I hope after
reading this article you will come up with many ideas for your own projects. I have a few projects in
mind that I may share in future articles if there is enough interest. Please let Nuts & Volts know if you
would like other article about using the ESP8266.

Devices like the ESP8266 make possible the idea of connecting almost anything to the Internet and
controlling and/or monitoring them from anywhere in the world. The ESP8266 is a giant step forward
in the IoT revolution.

Resources

The following links provide further information about ESP8266 devices.

Information about the ESP8266 Arduino port can be found at: https://github.com/esp8266/Arduino
An ESP8266 forum full of useful information can be found at: http://www.esp8266.com
The Expressif forum is available at: http://bbs.espressif.com/
The Teleduino client sketch (ESP8266_TeleduinoClient.ino) is available in the code provided with this
document.

Page 16

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

Photo One
The ESP8266 module (ESP-01) is about the size of a nickel

Photo Two
ESP8266 (ESP-01) Pinout

The squiggly trace is the WiFi Antenna
This device has 512K of Flash for program storage

Page 17

Chapter One – A Tiny, WiFi Enabled, Arduino Compatible Micro Controller

Photo Three
An ESP8266 (ESP-12) Development Module called the NodeMCU Amica

with many more I/O pins and memory (4MBytes) available.
It functions just like the prototype hardware described in this article

and is powered directly from the USB port

Page 18

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

Photo Four
Prototyping Hardware using an Arduino Uno
This method is not recommended, but works

Page 19

Chapter One – A Tiny, WiFi Enabled, Arduino Compatible Micro Controller

Photo Five
Recommended Prototyping Hardware using a USB 3.3V TTL Serial Cable

The LED is used for the Teleduino Demo

Page 20

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

Figure One
Prototype Hardware using Arduino Uno

as USB to TTL Serial Converter

Page 21

Chapter One – A Tiny, WiFi Enabled, Arduino Compatible Micro Controller

Figure Two
Prototype Hardware using a USB to 3.3 VDC TTL Serial Cable

Includes LED for the Teleduino Demo

Page 22

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

Chapter Two - NTP Clock

Introduction

Building digital clocks is not the sexiest of DIY projects yet many people do so each year. People build
these clocks in a wide variety of shapes and sizes including the weird one I designed and wrote about in
the March 2014 Nuts and Volts issue called, “A Unique LED Clock”. Most home brewed digital clocks
use an Arduino or other micro controller coupled to a real time clock (RTC) chip that provides the time
keeping machinery and in some cases battery backup facilities. It is up to the user to set the clock to the
correct time and if good quality components were used in the clock, time keeping accuracy can be
pretty good. Unless the RTC chip's oscillator is temperature controlled, however, accuracy will drift
over time forcing the user to perform periodic corrections to the time. Also, some RTC chips don't
handle daylight savings time (DST) so it is up to the user to reset their clocks twice a year in regions
that use daylight savings time.

To overcome the problems with manual time and date setting and time drift, many so called “Atomic
Clocks” or “Radio-Controlled Clocks” have appeared on the market. These come in every conceivable
shape and size as well. These clocks listen for WWV radio transmissions from Fort Collins, Colorado
and synchronize their time keeping mechanisms to the atomic clock reference used for these
transmissions thus guaranteeing their time keeping accuracy. These clocks typically require the user to
select their timezone but other than that do not offer any controls for manually setting the time.

The clock mechanisms in personal computers work differently still. Personal computer usually sync
their RTC using an Internet standard called Network Time Protocol or NTP. According to Wikipedia:

“NTP is a networking protocol for clock synchronization between computer systems over packet-switched, variable-
latency data networks. …

NTP is intended to synchronize all participating computers to within a few milliseconds of Coordinated Universal
Time (UTC). ...

NTP can usually maintain time to within tens of milliseconds over the public Internet, and can achieve better than one
millisecond accuracy in local area networks under ideal conditions.“

Basing a digital clock design on NTP requires access to the Internet which can be expensive to
implement but allows for a very simple clock design for a couple of reasons. First, no battery backup
circuitry is required to maintain the time setting. If clock power is lost, the connection to the Internet
will automatically be re-established once power is restored and the clock will automatically set itself to
the correct time. Second, no controls for manually setting the time are typically necessary because time
and date setting are automatic.

The ESP8266 family of devices makes inexpensive access to the Internet a non issue so it is natural to
use these devices in an NTP clock. Current readers of Nuts and Volts may remember my two previous
article about using the amazing ESP8266 devices:

Page 23

Chapter Two - NTP Clock

1. “Meet the ESP8266: A Tiny, WiFi Enabled, Arduino Compatible Micro Controller" in the
October 2015 issue and the

2. "Thinking of You" article in the November 2015 issue.

To refresh your memory, all members of the ESP8266 device family share some basic characteristics
including:

• 802.11 b / g / n
• Wi-Fi Direct (P2P), soft-AP
• Built-in TCP / IP protocol stack
• 802.11b mode + 19.5dBm output power
• Built-in temperature sensor
• Supports antenna diversity
• Off leakage current is less than 10uA
• Built-in low-power 32-bit CPU which can double as an application processor
• SDIO 2.0, SPI, UART , ADC, EEPROM
• Standby power consumption of less than 1.0mW (DTIM3)

In other words, the ESP8266 family of modules features low power consumption, high RF power
output and are capable of supporting all of the current 802.11 standards required for WiFi connectivity.
In addition, they support many industry standard hardware interfaces and can function as the
application processor in many designs as they do in this one. The ESP8266 is a 3.3 VDC part.

Two things make using these parts even sweeter. First, many ESP8266 modules can be purchased for
under $10 in single unit quantities. Second, these modules can be programmed in the Arduino
environment with the IDE so Arduino developers don't have to learn yet another programming
environment to use them.

In this article I present the design and implementation of a very simple NTP digital clock based on the
ESP8266 that drives a small LCD display. In actuality I used an ESP8266 variant called a NodeMCU
LUA Amica in this design as it has lots of digital I/O pins available making interfacing to the display
trivial.

This clock has a single pushbutton switch that, if configured for daylight saving time operation (more
on this later), allows the user to put the clock into and take the clock out of daylight saving time (DST)
mode.

Designing this digital clock allowed me to experiment with aspects of the ESP8266 that I had not used
before including the hardware SPI interface used to run the LCD display and the onboard EEPROM for
storage and retrieval of the DST state indicator.

Hardware

The hardware parts list below shows the parts required to build one of these NTP clocks and where to

Page 24

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

get them. As you can see there isn't much to it.

Part Source

NodeMCU LUA Amica R2 Module Electrodragon.com

1.8” TFT SPI LCD Display Adafruit.com - Product ID: 358

Pushbutton Switch SPST Radio Shark or anywhere else

USB Cable - USB A to USB Micro B Radio Shack or anywhere else

USB Power Supply
capable of at least 1 amp @ 5 volts

Radio Shack or anywhere else

Figure One shows a Fritzing connection diagram/schematic for the NTP clock. Figure Two shows the
design wired up and working on a breadboard. NOTE: there isn't a wire color correlation between
Figures One and Two. As shown above, the clock is powered via a USB cable and a USB power supply
module.

The wire by wire connections are shown below because they might not be clear from the Fritzing
diagram.

NodeMCU Amica Pin Adafruit 1.8” Display
Connection

DST Pushbutton
SPST Switch

D1 (GPIO 5) SW1

D3 (GPIO 0) LITE

D4 (GPIO 2) D/C

D5 SCK

D7 MOSI

D8 (GPIO 15) TFT_CS

3V3 VCC

GND Gnd SW2

The GPIO designations are shown above as that is how these digital I/O lines are referred to in the
Arduino code.

The Adafruit LCD display also has a micro SD memory card connector and interface which can be
used with the ESP8266 although they were not needed for this project.

Page 25

Chapter Two - NTP Clock

Software

The software for the ESP8266 NTP clock was developed using the Arduino IDE. See my previous
articles or the Resources section for how to set-up the Arduino IDE on your computer for targeting
ESP8266 type devices. Make sure to select “NodeMCU 1.0 (ESP-12E Module)” as the board type in
the tools menu.

The ESP8266 NTP clock software should be available in the code associated with this document. The
sketch is called: ESP8266_NTPClock.ino. To use this software copy/move the ESP8266_NTPClock
directory from the code directory into your Arduino directory.

Whereas the hardware for this clock borders on the trivial, the software/firmware for the clock is a bit
more involved and complex. The seven files which make up the code are described in the table below:

File Description

ESP8266NTPClock.ino Main program. Initializes the hardware, logs into
the local WiFi network and then installs the NTP
code as the time provider. It then manages the
update of the clock on the display.

ESP8266_ST7735.cpp LCD driver code specific to the Adafruit 1.8”
(blacktab) display utilizing the hardware SPI
interface of the ESP8266.

ESP8266_ST7735.h Header file for the LCD driver code above

Icons.h Data for the WiFi, Sun and Moon icons. Data is in
xbm format.

NTP.h Functions for sending UDP packets to NTP
servers and retrieving the GMT time and
converting it to local time.

TextGraphicsFunctions.h Misc functions for formatting the time data for
display on the LCD.

Misc.h Code for reading and writing the ESP8266's
EEPROM

The ESP8266_ST7735 LCD driver code was adapted from the Adafruit ST7735 library to use the
hardware SPI interface on the ESP8266. If you want to use a different LCD display you will have to
find/develop an appropriate driver yourself.

In addition to the files above, the following Arduino libraries are also required:

Library Source

Adafruit_GFX https://github.com/adafruit/Adafruit-GFX-Library

Page 26

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

Library Source

Time https://github.com/PaulStoffregen/Time

The version of these libraries I used to develop the NTP clock are included in the zip file for this
article. Remember libraries must be installed in the arduino/libraries directory on your development
computer and the Arduino IDE must be restarted to recognize them.

Most of the code that makes up the NTP clock is straight forward and will be easy to understand. The
NTP code in the file NTP.h, is more complex however. To retrieve the time one must:

Get an IP address of a time server from the pool of time.nist.gov servers using the hostByName function
as shown below. If you were to monitor the timeServerIP address during the operation of the clock you
would see that the time requests rotate in a round robin fashion between the servers in the time.nist.gov
pool.

 // Get a server from the pool
WiFi.hostByName("time.nist.gov", timeServerIP);

Once you identify a server to make a request of, you must create a UDP packet configured with
proper values and then send it the packet. See https://tools.ietf.org/html/rfc5905#section-7.3 for an
explanation of the fields in the UDP request packet. The sendNTPPacket function below does this.

// Send an NTP request to the time server at the given address
unsigned long sendNTPpacket(IPAddress& address) {

 // Set all bytes in the buffer to 0
 memset(packetBuffer, 0, NTP_PACKET_SIZE);

 // Initialize values needed to form NTP request
 packetBuffer[0] = 0b11100011; // LI, Version, Mode
 packetBuffer[1] = 0; // Stratum, or type of clock
 packetBuffer[2] = 6; // Polling Interval
 packetBuffer[3] = 0xEC; // Peer Clock Precision
 // 8 bytes of zero for Root Delay & Root Dispersion
 packetBuffer[12] = 49;
 packetBuffer[13] = 0x4E;
 packetBuffer[14] = 49;
 packetBuffer[15] = 52;

 // All NTP fields have been given values, now
 // you can send a packet requesting a timestamp:
 udp.beginPacket(address, 123); // NTP requests are to port 123
 udp.write(packetBuffer, NTP_PACKET_SIZE);
 udp.endPacket();
}

Once the UDP packet is sent, you wait for a response and in that response will be a time stamp (the
four bytes starting at the 40th byte of the response) indicating the time the packet was sent. The units of
this time stamp is seconds since 1900 and is a very large number. This value gets converted to Unix
time which is seconds since Jan 1, 1970 by the subtraction of the number of seconds between 1900 and
1970. This number is then further modified by timezone correction. This corrected value is what is
used by the Time library and converted to the current time and date displayed by this clock. The
getNTPTime function pulls this all together.

Page 27

Chapter Two - NTP Clock

// NTP Time Provider Code
time_t getNTPTime() {

 int attempts = 10;

 // Try multiple attempts to return the NTP time
 while (attempts--) {

 // Get a server from the pool
 WiFi.hostByName(ntpServerName, timeServerIP);
 Serial.print("Time server IP address: ");
 Serial.println(timeServerIP);

 while (udp.parsePacket() > 0); // Discard any previously received packets

 Serial.println("Transmitted NTP Request");
 sendNTPpacket(timeServerIP);

 uint32_t beginWait = millis();
 while (millis() - beginWait < 1500) {
 int size = udp.parsePacket();
 if (size >= NTP_PACKET_SIZE) {
 Serial.println("Received NTP Response");
 udp.read(packetBuffer, NTP_PACKET_SIZE); // Read packet into the buffer
 unsigned long secsSince1900;

 // Convert four bytes starting at location 40 to a long integer
 secsSince1900 = (unsigned long) packetBuffer[40] << 24;
 secsSince1900 |= (unsigned long) packetBuffer[41] << 16;
 secsSince1900 |= (unsigned long) packetBuffer[42] << 8;
 secsSince1900 |= (unsigned long) packetBuffer[43];

 Serial.println("Got the time");

 return secsSince1900 - 2208988800UL + realTimeZoneOffset * SECS_PER_HOUR;
 }
 delay(10);
 }
 Serial.println("Retrying NTP request");
 delay(4000);
 }
 Serial.println("No NTP Response");
 return 0;
}

User Configuration of the NTP Clock Software

The NTP clock's software must be configured before the clock will work correctly. All user
configuration items are found in the ESP8266_NTPClock.ino file. Please locate the following text in
that file:

// ***
// Start of user configuration items
// ***

// Set your WiFi login credentials
#define WIFI_SSID "xxxxxxxx"
#define WIFI_PASS "xxxxxxxxxxxxx"

#define TIMEZONE_OFFSET -7 // Set your timezone offset (-7 is mountain time)
#define USE_DST true // Set to false to disable DST mode
#define HOUR_FORMAT_12 true // Set to false for 24 hour time mode

Page 28

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

// ***
// End of user configuration items
// ***

First and most importantly you must modify the code with the SSID and Password of your WiFi
network otherwise the clock won't be able to access the Internet and by extension the NTP servers that
provide the time. Next, you must set the correct timezone offset for your location. Timezone offsets can
be found here:

https://en.wikipedia.org/wiki/List_of_UTC_time_offsets

Then you must decide if your clock will use daylight saving time or not and whether it will operate in
12 or 24 hour format. USE_DST must be set true if your clock will use daylight savings time whether
or not DST is currently in effect. Set HOUR_FORMAT_12 true to run your clock in 12 hour format
otherwise it will operate in 24 hour time format.

The code can be compiled and uploaded to the NodeMCU device once the configuration data is set and
all of the required libraries have been installed in the Arduino environment.

NTP Clock Operation

The clock should start immediately once the software is uploaded. Figure Three shows the clock's
display while a connection is being made to the local WiFi network. If this screen doesn't change to the
clock display of Figure Four it means there were problems logging into the WiFi network. If this is the
case go back and verify the WIFI_SSID and WIFI_PASS entries in the code and that the WiFi network
is working.

As mentioned, the WiFi login display should change to the clock display of Figure Four once a WiFi
connection is established. If the clock is not configured for DST mode, you are done. The clock should
run as long as power is applied and it will sync its time to an NTP time server every five minutes,
making the clock extremely accurate.

If the clock is configured for DST operation (USE_DST is true), it is up to the user to put the clock in
DST mode if DST is currently in effect (mid April through November in the US). The clock doesn't
default to DST mode so the user must push the DST button until the DST string is displayed in the
upper right corner of the clock. You'll notice the displayed time changes when DST mode is engaged.
Pressing the DST button again toggles the clock out of DST mode.

The clock will continue to run as long as power is applied. If the Internet connection is dropped, the
clock will maintain the time itself. If WiFi goes down but the clock remains powered, the clock will
need to be rebooted once the network issue is resolved so that NTP time syncing can be restarted. If
power is lost to both the clock and the WiFi network, the clock will reboot and wait for the network to
come back up and will then reconnect automatically.

Page 29

Chapter Two - NTP Clock

While the clock is operational, the time and date will update once a minute. During the day, a sun icon
will be displayed in the upper left corner. The sun icon will be replaced by a moon icon after about 8
PM in the evening.

As daylight savings time comes and goes, the user will be required to inform the clock by pressing the
DST pushbutton which toggles the DST mode on and off. Other than that there are no other ongoing
operational maintenance issues required by the user.

As a final note, the DST enabled state is written to the EEPROM in the ESP8266 every time the DST
pushbutton is pressed. This was necessary to bring back the correct DST state if power to the clock was
lost and then regained. See the file Misc.h for the EEPROM read/write code.

Resources

The following resources may be of use:

Information about NTP can be found all over the Internet. See http://www.ntp.org/ for detailed
information.

Information on WWV time broadcasts can be found at:
https://en.wikipedia.org/wiki/WWV_(radio_station)

Information about programming the ESP8266 in the Arduino environment can be found at:
github.com/esp8266/Arduino and in my two articles mentioned previously.

Information about the NodeMCU Amica can be found at: www.electrodragon.com/product/nodemcu-
lua-amica-r2-esp8266-wifi-board/.

Information about the Adafruit 1.8” TFT SPI LCD display can be found at:
http://www.adafruit.com/products/358.

Page 30

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

Figure One
ESP8266 NTP Clock Wiring Diagram / Schematic

Page 31

Chapter Two - NTP Clock

Figure Two
The ESP8266 NTP Clock Breadboard

Page 32

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

Figure Three
Initial WiFi Connection Display

Page 33

Chapter Two - NTP Clock

Figure Four
Typical Clock Display

Note: daylight saving time (DST) mode is on and because the Sun icon is being displayed it is daytime.

Page 34

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

Chapter Three - Weather Clock

Introduction

Readers of Nuts and Volts may recall my three previous article about using the amazing ESP8266
family of devices. They are:

1. “Meet the ESP8266: A Tiny, WiFi Enabled, Arduino Compatible Micro Controller" in the
October 2015 issue.

2. "Thinking of You" article in the November 2015 issue.

3. “ESP8266 NTP Clock” article in the June 2016 issue.

The more I use these devices, the more I am impressed with their value proposition, capabilities and
robustness. After writing the ESP8266 NTP Clock article where I coupled a NodeMCU Amica module
(which contains an ESP8266-12 device) with an Adafruit 1.8” TFT LCD display I started to look
around for other applications that I could use this same hardware for. I came up with two ideas.

1. Building a mini weather station that uses weather data available on the Internet (in this case
from myweather2.com) for any location in the world and displaying it on the LCD display.

2. An RSS Feed reader that can display headlines from various news sources across the Internet on
the LCD display.

In this article I will present the implementation of the first idea in what I call my Weather Clock which
combines the display of localized weather conditions with the auto setting NTP clock from my
previous article. So with extremely simple hardware with a low parts count you can get current and
forecasted weather conditions for your specific location and have a clock that never needs to be
manually set. Pretty sweet don't you think ?

I'll save the RSS Feed reader (which is really cool as well) for a future article. This also runs on exactly
the same hardware as the Weather Clock and the NTP Clock.

Building a weather station with a micro-controller is hardly new news but most of the implementations
I have seen used a PC or Raspberry Pi to access the Internet for the weather data and then messaged the
data into a small enough package that it could be transferred to the micro-controller weather station for
display. In other words the micro-controller based system was just a display for the previously digested
weather data.

I took this as somewhat of a challenge to see if I could combine both weather data acquisition and
display using a single ESP8266 device and, while I was at it, see if I could include the NTP clock
functionality as well.

Page 35

Chapter Three - Weather Clock

I'm pleased to say that I was able to pull this off. If you have ever wanted to build a mini weather
station / clock for your home or business I don't believe you will find a simpler or cheaper solution than
the one presented here.

Hardware

As mentioned, the Weather Clock uses the same hardware as used in my ESP8266 NTP Clock. To save
you from going back and (re)reading the previous article, the hardware information is repeated here
starting with the minimalist parts list.

Part Source

NodeMCU LUA Amica R2 Module Electrodragon.com

1.8” TFT SPI LCD Display (blacktab) Adafruit.com - Product ID: 358

Pushbutton Switch SPST Radio Shack or anywhere else

USB Cable - USB A to USB Micro B Radio Shack or anywhere else

USB Power Supply
capable of at least 1 amp @ 5 volts

Radio Shack or anywhere else

Hook up wire and breadboard Radio Shack or anywhere else

Figure One shows a Fritzing connection diagram/schematic for the Weather Clock. Figure Two shows
the design wired up and working on a breadboard. NOTE: there isn't a wire color correlation between
Figures One and Two. As shown above, the Weather Clock is powered via a USB cable and a USB
power supply module.

The wire by wire connections are shown below because they might not be clear from the Fritzing
diagram.

NodeMCU Amica Pin Adafruit 1.8” Display
Connection

DST Pushbutton
SPST Switch

D1 (GPIO 5) SW1

D3 (GPIO 0) LITE

D4 (GPIO 2) D/C

D5 SCK

D7 MOSI

D8 (GPIO 15) TFT_CS

3V3 VCC

GND Gnd SW2

The GPIO designations are shown above as that is how these digital I/O lines are referred to in the

Page 36

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

Arduino code.

The Adafruit LCD display also has a micro SD memory card connector and interface which can be
used with the ESP8266 although they were not needed for this project.

Software

The software for the ESP8266 Weather Clock was developed using the Arduino IDE. See my previous
articles and/or the Resources section for how to set-up the Arduino IDE on your computer for targeting
ESP8266 type devices. Make sure to select “NodeMCU 1.0 (ESP-12E Module)” as the board type in
the tools menu.

The ESP8266 Weather Clock software should be available in the code associated with this document.
The sketch is called ESP8266_WeatherClock.ino. To use this software, copy/move the
ESP8266_WeatherClock directory from the code directory into your Arduino directory.

While the hardware is about as simple as possible, the software is quiet complex and is made up of the
following files:

File Description

DisplayPages.h Code for each of the seven display pages

ESP8266_ST7735.cpp LCD driver code specific to the Adafruit 1.8”
(blacktab) display utilizing the hardware SPI
interface of the ESP8266.

ESP8266_ST7735.h Header file for the LCD driver code above

ESP8266_WeatherClock.ino Main program. Initializes the hardware, logs into
the local WiFi network and then installs the NTP
code as the time provider. It then manages the
display of the display pages on the LCD.

Icons.h Data for the WiFi, Sun and Moon icons. Data is in
xbm format.

Misc.h Code for reading and writing the ESP8266's
EEPROM

NTP.h Functions for sending UDP packets to NTP
servers and retrieving the GMT time and
converting it to local time.

TGFunctions.h Misc functions for formatting text and graphical
data for display on the LCD.

Weather.cpp Weather class for sending weather data requests to
myweather2.com, for retrieving the JSON data
stream returned and then parsing the data to

Page 37

Chapter Three - Weather Clock

File Description

extract the pertinent weather attributes for display
by the various display pages.

Weather.h Header file for the Weather class above

In addition to the files above, the following Arduino libraries are also required:

Library Function Source

Adafruit_GFX
NOTE: this library had to be

modified for use with the
ESP8266 so it is not the stock

library.

Text and graphics functions for
the LCD display driver

https://github.com/adafruit/Adafr
uit-GFX-Library

Time Updated and improved version
of the Arduino library

https://github.com/PaulStoffrege
n/Time

ArduinoJson JSON parser https://github.com/bblanchon/Ar
duinoJson

The version of these libraries I used to develop the Weather Clock are also included in the code
directory for this article. Remember libraries must be installed in the arduino/libraries directory on
your development computer and the Arduino IDE must be restarted to recognize them.

User Configuration of the Weather Clock Software

The Weather Clock's software must be configured before it will work correctly. All user configuration
items are found in the ESP8266_WeatherClock.ino file. Please locate the following text in that file:

// ***
// Start of user configuration items
// ***

// Set your WiFi login credentials
const char * WIFI_SSID = "xxxxxxxxxx";
const char * WIFI_PASS = "xxxxxxxxxxxx";

const int TIMEZONE_OFFSET = -7; // Set your timezone offset (-7 is mountain time)
const bool USE_DST = true; // Set to false to disable DST mode
const bool HOUR_FORMAT_12 = true; // Set to false for 24 hour time mode

const char * API_KEY = "yyyyyyy"; // Key/Access code from myweather2.com
const char * LOCATION_STRING = "zzzzzz";// Location indicator

// ***
// End of user configuration items
// ***

First and most importantly you must modify the code with the SSID and Password of your WiFi

Page 38

https://g/

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

network otherwise the Weather Clock won't be able to access the Internet and by extension the weather
data feed from myweather2.com nor the NTP servers that provide the time. Next, you must set the
timezone offset for your location to make the clock display the correct time. Timezone offsets can be
found here:

https://en.wikipedia.org/wiki/List_of_UTC_time_offsets

Then you must indicate whether your clock will use daylight saving time or not and whether it will
operate in 12 or 24 hour format. USE_DST must be set true if your clock will use daylight savings time
whether or not DST is currently in effect. Set HOUR_FORMAT_12 true to run your clock in 12 hour
format otherwise it will operate in 24 hour time format.

You must get an api key from myweather2.com (which they refer to as the Unique Access Code) to
access their service and retrieve weather data from them. To get a key/code go to:

http://www.myweather2.com/ilogin.aspx

and fill out their registration form. After you have created an account you need to login and go to your
Developer Zone page and you will see the key/code they have assigned you. This key/code must be
transferred to the API_KEY entry in the configuration data shown above. Note, only one key/code is
available per email address.

You must also tell the myweather2.com service the location you want the weather data for. This is what
the LOCATION_STRING in the configuration data does. This string has three possible formats:

1. A UK Postcode
2. A US zip code
3. A latitude,longitude

For my Weather Clock I used my zip code.

The code can be compiled and uploaded to the NodeMCU Amica device once the configuration data is
set and all of the required libraries have been installed in the Arduino environment.

Weather Clock Operation

Figures Three through Nine show the Weather Clock in operation. Each of these images show what I
refer to as a display page. Each display page shows different information, shown below, but all pages
have a series of seven small circles at the bottom of the page to indicate which display page is currently
being shown.

Page 39

Chapter Three - Weather Clock

Display Page Number Information Displayed

1 WiFi logo and Credits

2 Current Weather Conditions

3 Day Conditions Forecast

4 Night Conditions Forecast

5 Next Day Conditions Forecast

6 Next Night Conditions Forecast

7 NTP Time and Data Display

When the Weather Clock software first starts there is (usually) a short delay while three things happen.
First, the Weather Clock logs into the local WiFi network. Next, the NTP clock code initializes and
makes a request over the Internet to retrieve the time from a NTP time server. Finally, weather data is
requested and retrieved from myweather2.com. If all is well, the first display page with the WiFi icon
and credits is selected for display (Figure Three) and after a programmable length of time, the other six
display pages are sequentially displayed. After display page seven, the NTP Clock, is displayed the
sequence repeats starting with display page one.

By default, time data is retrieved every five minutes; weather data is retrieved every 15 minutes;
display pages are changed every 12 seconds. Of course each of these time intervals can be changed in
the software. I should point out that the acquisition of weather and time data is completely disjoint from
its display. That is, these two processes happen completely independently of each other.

The operation of the Weather Clock can best be understood by examining the code in the file
ESP8266WeatherClock.ino. A Finite State Machine (FSM) contained in the loop() function
orchestrates everything. Technically a FSM is

 “A model of a computational system, consisting of a set of states, a set of possible inputs, and a rule to
map each state to another state, or to itself, for any of the possible inputs”.

Sounds daunting but don't let the definition scare you, the operation is really quite simple.

The Weather Clock's FSM is defined by this series of states:

INIT, CHECK_EVENTS, ACQUIRE_DATA, ADVANCE_DISPLAY, UPDATE_DST_STATUS

which will each be described shortly. In addition, there is a variable called state which tells the state
machine which state it is currently in. Transitions between the states happen when certain events or
inputs occur. The FSM is guaranteed to be in one of the defined states every time through the loop()
function.

The INIT state is the initialization state for the state machine and it is only entered once when the

Page 40

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

ESP8266 device is first powered up. In this state, the display page number variable is set to one;
display page one is displayed on the LCD and the dataAcquisitionCount and the displayAdvanceCount
variables are initialized to a time in the future when new weather data is to be acquired and when the
next display page is to be shown. The CHECK_EVENTS state is then selected for the next iteration of
the loop() function.

The FSM will stay in the CHECK_EVENTS state until one of the following things happen:

1. Activity is detected on the DST pushbutton switch
2. The weather data acquisition count has expired and new weather data needs to be acquired.
3. It is time to advance to the next display page.

The state of the FSM will change to UPDATE_DST_STATUS if number one occurs; to
ACQUIRE_DATA if number two occurs and to ADVANCE_DISPLAY if number three occurs.

In the UPDATE_DST_STATUS state the Daylight Savings Time or DST status is toggled. If DST was
on, it is turned off and if it was off, it is turned on. Every change to the DST state is stored in the
ESP8266's EEPROM so that it survives power outages. Then the display page variable is set so that
display page seven, the NTP Time and Date page, will be displayed the next time the
ADVANCE_DISPLAY state is entered. Finally, the state is changed to ADVANCE_DISPLAY for the
next trip through the loop.

In the ACQUIRE_DATA state the retrieveWeatherData function in the Weather class is called to
acquire new weather data. A call to this function causes a whole chain of events to occur. First, an
HTTP GET request is built up using the API_KEY and the LOCATION_STRING and it is sent to
myweather2.com. The returned weather data in JSON format is stored line by line in a buffer for later
processing. JSON or (Javascript Object Notation) is a text-based, human-readable data interchange
format used for representing simple data structures and objects in Web browser-based code. See
Resources below for information about JSON if you are interested.

After all the data has been retrieved, it is passed to the ArduinoJson parser which makes the various
data items easily accessible. All of the weather attributes displayed on the five weather display pages
are extracted from the returned JSON data.

Once new weather data has been acquired the dataAcquisitionCount variable is reinitialized to a time in
the future when new weather data will again be required. Finally the state is changed to
CHECK_EVENTS for the next pass through the loop.

The ADVANCE_DISPLAY state is entered when it is time to change the displayed page. In this state
the LCD display is cleared and the frame which is common to all display pages is drawn around the
perimeter of the display. The displayPageNumber variable is then incremented and wrapped around if
necessary and the new display page is displayed. Finally displayAdvanceCount is reinitialized and the
state variable is set back to CHECK_EVENTS for the next pass through the loop. In case it is not
obvious, the ESP8266 spends most of its time spinning in the CHECK_EVENTS state only changing
states occasionally when one of the three events occur.

Page 41

Chapter Three - Weather Clock

Astute readers may be wondering how and when the NTP time data gets updated since there are no
references to time update in the FSM. That is because time update is handled behind the scenes in the
Time library and so doesn't need to be explicitly performed in the Weather Clock's FSM code.

Conclusions

To build a Weather Clock of your own, connect the Adafruit 1.8” LCD display to the NodeMCU
Amica module and then connect a DST pushbutton switch. Next connect a USB cable from the
NodeMCU Amica module to your development computer. After installing the required libraries bring
up the Arduino IDE and load the software for this article. Edit the User Configuration data as described
previously and then compile and upload the code. If you did everything correctly, you should have a
fully functioning, stand alone Weather Clock of your own.

Resources

The following resources may be of use:

Information about myweather2.com's weather data feed can be found at:
www.myweather2.com/developer.

Information about JSON can be found at: http://www.json.org/

Information about NTP can be found at: http://www.ntp.org/.

Information about programming the ESP8266 in the Arduino environment can be found at:
github.com/esp8266/Arduino and in my three articles mentioned previously.

Information about the NodeMCU Amica can be found at: www.electrodragon.com/product/nodemcu-
lua-amica-r2-esp8266-wifi-board/.

Information about the Adafruit 1.8” TFT SPI LCD display can be found at:
http://www.adafruit.com/products/358.

Page 42

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

Figure One
Fritzing connection diagram/schematic

Page 43

Chapter Three - Weather Clock

Figure Two
The design wired up and working on a breadboard

Page 44

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

Figure Three
Display Page One

WiFi Login and Program Credits

Page 45

Chapter Three - Weather Clock

Figure Four
Display Page Two

Current Weather Conditions

Page 46

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

Figure Five
Display Page Three

Day Conditions Forecast

Page 47

Chapter Three - Weather Clock

Figure Six
Display Page Four

Night Conditions Forecast

Page 48

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

Figure Seven
Display Page Five
Next Day Forecast

Page 49

Chapter Three - Weather Clock

Figure Eight
Display Page Six

Next Night Forecast

Page 50

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

Figure Nine
Display Page Seven

 NTP Time and Date Display

Page 51

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

Chapter Four - World Clock

Introduction

What do most movie scenes of the stock market trading floor and most high end international hotels
have in common? They both have world clocks that allow people to see the time and date in remote
locations in the world. World clocks are important to business as they allow companies and/or
individuals to have an idea of the time of day and date where their customers reside. There is nothing
more embarrassing than calling an international client in the middle of the night because you figured
the time difference incorrectly. World clocks can even be important to families that have members
distributed across the US or the world so they know when would be a good time to call.

In order for world clocks to be useful, they must be accurate, they must show the time and date
correctly for each location and they must take world wide daylight saving time into account. To assure
the accuracy of this world clock design I have opted to again use Network Time Protocol or NTP as the
provider of time information. NTP can provide time accurate to within a second to devices over the
Internet which is good enough for our application here.

Basing a digital clock design on NTP requires access to the Internet which can be expensive to
implement but allows for a very simple clock design for a couple of reasons. First, no battery backup
circuitry is required to maintain the time setting. If clock power is lost, the connection to the Internet
will automatically be re-established once power is restored and the clock will automatically set itself to
the correct time. Second, no controls for manually setting the time and date are typically necessary
because the time and date are set automatically.

The ESP8266 family of devices makes inexpensive access to the Internet possible so it is natural to use
these devices in digital and world clock applications. Current readers of Nuts and Volts may remember
my previous articles about using the amazing ESP8266 devices:

1. “Meet the ESP8266: A Tiny, WiFi Enabled, Arduino Compatible Micro Controller" in the
October 2015 issue.

2. "Thinking of You" article in the November 2015 issue.
3. “ESP8266 NTP Clock” article in the June 2016 issue
4. “ESP8266 Weather Clock” article in the November 2016 issue
5. “ESP8266 RSS News Reader” article in the January 2017 issue

I should mention that the hardware used in articles 3, 4 and 5 above is exactly the same. That is, with
one hardware setup (be it a breadboard or a PCB) but different software, you can have an NTP clock,
an NTP clock and weather station combination or an RSS news reader. Now, with this article, the exact
same hardware can function as a World Clock as well.

The World Clock design presented here has some rather interesting attributes including:

Page 53

Chapter Four - World Clock

• It uses NTP so it sets itself automatically whenever it is powered up. There is no need for
switches or buttons for setting the time or date. In fact there are no switches or buttons at all in
this design.

• It uses a timezone library that automatically deals with daylight savings time (DST) world wide
so there is no need to reset the clock when the time changes or to click a button to enter/exit
daylight saving time.

• It currently has a round robin display of time and date for Sydney, Frankfurt, London, New
York, Houston, Denver, Phoenix and Los Angeles and you can changes these for other
locations if you want to modify the code provided.

• The clock can run in 12 or 24 hour formats.

• It runs a finite state machine that will recover automatically if network connectivity is lost and
then regained and it will also recover from power outages automatically as well.

• The design consists of two components only. A NodeMCU Amica ESP8266 module and a 1.8”
LCD display. One cannot build many circuits simpler than this.

• This World Clock can be built for as little as $22.

As soon as you power up this design, it accesses NTP time wirelessly via the Internet and then
calculates and displays the time and date in the cities mentioned above. There is nothing to set or
configure and it will continue to display the time and date until it is powered down. You might call this
a no fuss world clock because there is nothing users have to do. When daylight saving time arrives in
one or more of the target cities/timezones, it will automatically be taken into consideration. It even
knows how to deal with places like Arizona which don't use DST.

The World Clock presented in this article is an adaption of the World Clock example program included
with the Timezone library described later. My contribution is the use of NTP as the source of the time
data, the state machines that allow the clock to recover from WiFi, Internet or power disruptions and
the formatting and display of the time and date information on the LCD display.

Hardware

The hardware parts list below shows the components required to build a World Clock and where to get
them. As you can see there isn't much to it.

Part Source

NodeMCU LUA Amica R2 Module Electrodragon.com

1.8” TFT SPI LCD Display Adafruit.com - Product ID: 358

Page 54

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

Part Source

 or
 SainSmart.com 1.8 ST7735R TFT LCD Module

with MicroSD
SKU:20-011-920

USB Cable - USB A to USB Micro B Radio Shack or anywhere else

USB Power Supply
capable of at least 1 amp @ 5 volts

Radio Shack or anywhere else

Figure One shows a Fritzing diagram for the World Clock. Figure Two shows the design wired up and
working on a breadboard. As implied above, the clock is powered via a USB cable and a USB power
supply module or alternatively, it can be plugged into a USB port on your computer.

The wire by wire connections are shown below as they might not be clear from the Fritzing diagram.

NodeMCU Amica Pin Adafruit 1.8” Display
Connections

D4 D/C

D5 SCK

D7 MOSI

D8 TFT_CS

3V3 RESET

3V3 LITE

3V3 3V3

GND Gnd

Both the Adafruit and the Sainsmart displays have a micro SD memory card connector and interface
which can be used with the ESP8266 although they are not required for this project.

Software

The software for the ESP8266 World Clock was developed using the Arduino IDE. I used version 1.8.0
for MacOS but you should be able to use the Arduino IDE on Windows as well. See my previous
articles or the Resources section for how to set-up the Arduino IDE on your computer for targeting
ESP8266 type devices. Make sure to select “NodeMCU 1.0 (ESP-12E Module)” as the board type in
the tools menu.

The ESP8266 World Clock software should be available in the code associated with this document.
The file is called: ESP8266_WorldClock.ino. To use this software, copy/move the

Page 55

Chapter Four - World Clock

ESP8266_WorldClock directory into your computer's Arduino directory. The code directory contains
the versions of the libraries I used during program development. It is important to use these versions as
newer or older versions may not function correctly. These library files should be moved into your
arduino/libraries directory for use. Remember the Arduino IDE, if running, must be restarted to
recognize new libraries after you install them.

Whereas the hardware for this World Clock borders on the trivial, the software/firmware for the clock
is a bit more involved and complex. The files which make up the program are described in the table
below:

File Description

ESP8266_WorldClock.ino Main program which initializes the hardware for
operation and runs a finite state machine that
insures the WiFi connection to the Internet is
continually maintained.

DisplayFSM Code for formatting and displaying time and date
information on the LCD and a finite state machine
that controls the order that timezones are
displayed in, which timezone is currently being
displayed and how long each timezone is
displayed.

Time Change Rules (described shortly) for each
timezone are also defined in this file and the
conversion of NTP's UTC time to local timezone
time is perform here as well.

NTP.h Functions for sending UDP packets to NTP
servers on the Internet and retrieving the returned
UTC time.

TextGraphicsFunctions.h Misc functions for formatting text data for display
on the LCD.

TimezoneExt.h A subclass of the Timezone class that contains the
Time Change Rules in addition to a name assigned
to the timezone.

In addition to the files above, the following Arduino libraries are required:

Library Source

TFT_ST7735 https://github.com/sumotoy/TFT_ST7735

Time https://github.com/PaulStoffregen/Time

Timezone https://github.com/JChristensen/Timezone

Page 56

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

User Configuration of the World Clock Software

The World Clock's software must be configured before the clock will operate correctly. All user
configuration items are found in the file, ESP8266_WorldClock.ino. Please locate the following text in
that file:

// ***
// Begin user configurable items
// ***

// Set your WiFi login credentials
#define WIFI_SSID "XXXXXX"
#define WIFI_PASS "YYYYYY"

#define USE_12_HOUR_FORMAT true
#define PAGE_DISPLAY_TIME_SECS 20
#define PAGE_DISPLAY_TIME_MS (PAGE_DISPLAY_TIME_SECS * 1000)

// ***
// End user configurable items
// ***

First and most importantly you must modify the code with the SSID and Password of your WiFi
network otherwise the clock won't be able to access the Internet and by extension the NTP servers that
provide the time. Next you must decide if your clock will operate in 12 or 24 hour format. Set
USE_12_HOUR_FORMAT true to run your clock in 12 hour format otherwise it will operate in 24
hour time format. Finally you can configure how long each timezone display page is displayed. By
default the time is 20 seconds but you can make this longer or shorter depending upon your preference.

The code can be compiled and uploaded to the NodeMCU device once the configuration data is set and
all of the required libraries have been installed in the Arduino environment.

World Clock Operation

The clock should start immediately once the software is compiled and uploaded. Figure Three shows
the clock's display while a connection is being made to the local WiFi network. If this screen doesn't
change to a timezone display similar to Figure Four it means there were problems logging into the
WiFi network. If this is the case, go back and verify that the WIFI_SSID and WIFI_PASS entries in the
code are correct and that the WiFi network is working.

The WiFi login display will be replaced by the first timezone display page once a WiFi connection is
established. The clock should run as long as power is applied and it will sync its time to an NTP time
server every five minutes, making the clock very accurate. Each timezone display page will be
displayed for the configured time interval in a round robin fashion. By default this means time and date
will be displayed in the following order: Sydney, Frankfurt, London, New York, Houston, Denver,
Phoenix and Los Angeles.

Page 57

Chapter Four - World Clock

The clock will continue to run as long as power is applied. If the Internet connection is dropped, the
clock will maintain the time itself. If WiFi goes down but the clock remains powered, the clock will
continually try to reestablished Internet connectivity and will re-sync with NTP as soon as possible. If
power is lost to both the clock and the WiFi network, when power is restored the clock will reboot and
wait for the network to come back up and will then reconnect automatically.

Timezones, Timezones, Timezones

Wrapping my head around world wide timezones was the most difficult part of writing this code. Think
about it. Its a somewhat easy task to calculate offsets from the time in your location to any timezone in
the world but what happens when the timezone you are interested in changes to or from daylight
savings time or whatever they call it in their location. To compound the problem there is no world
standard that I am aware of that says the time changes from standard to daylight savings time and back
have to occur on the same date and time in all locations. Luckily the timezone library used in this
application, written by J Christensen, has this kind of smarts built in. It is our responsibility, however,
to define Time Change Rules for each timezone that describe to this library the rules for each location.

To define the appropriate Time Change Rules for each timezone requires gathering the following
information. The day of the week the time change occurs, which week of the month the change occurs
in, at what hour the change occurs and the offset in minutes of the timezone from universal coordinated
time or UTC when the change occurs. Two rules are required for each timezone. One for the change to
daylight savings time and another for the change back to standard time. Since I live in Colorado, I'll use
the Time Change Rules for the mountain timezone as an example. The following code fragment was
extracted from the file DisplayFSM.h.

// US Mountain Time Zone (Denver, Colorado Springs, Salt Lake City)
TimeChangeRule usMDT = {"MDT", Second, Sun, Mar, 2, -360};
TimeChangeRule usMST = {"MST", First, Sun, Nov, 2, -420};
TimezoneExt usMT("Denver", usMDT, usMST);

The first rule, usMDT, is the rule for when daylight saving time starts in my location. It says the time
change occurs the second Sunday of March at 2 AM and that during DST we are offset a negative 360
minutes or -6 hours from UTC time. The second rule, usMST, is for standard time that starts the first
Sunday of November again at 2 AM. During standard time we are -7 hours from UTC time. Note: there
is no mention of the day of the month that time changes as that is different every year.

These two Time Change Rules are then combined into a TimezoneExt object called, usMT, and given
the name “Denver” which will be displayed for the mountain time zone on the LCD. Using these rules
UTC time returned from NTP is converted to local time for the timezone and that is what gets
displayed on the World Clock.

Arizona is unique in that they don't use daylight savings time in their state (they may have the right
idea). Arizona is on standard Mountain time the whole year. To accommodate this, the TimezoneExt
object specifies usMST for both of their Time Change Rules as shown below:

// Arizona is US Mountain Time Zone but does not use DST

Page 58

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

TimezoneExt usAZ("Phoenix", usMST, usMST);

After all the Time Change Rules and the TimezoneExt objects are defined in the file DisplayFSM.h the
TimezoneExt objects are placed into an array called timeZones as shown below.

// All of the timezone we want to display time for
TimezoneExt timeZones [] = {
 ausET, CE, UK, usET, usCT, usMT, usAZ, usPT
};

The World Clock code walks through this array sequentially and displays the time and date information
calculated for each timezone. Because you have access to the software you could change the order of
the timezones displayed, remove timezones you are not interested in or add new timezones of your
choice. The World Clock code should automatically adapt to any changes you make to the timeZones
array. If you have a large distributed family you might want to have your World Clock display the time
and date where each family member lives.

You'll want to check the time and date for any timezones you add and this can easily be done by
googling, “time in XXXX” where XXXX is the name of a city in the timezone you added.

Conclusions

The World Clock presented in this article is one of the simplest projects one could build and it can be
built for around $22. Two components connected with 6 wires is all it takes. Plug your World Clock
into your computer, update the user configuration info, compile the code and upload it to your World
Clock and you should be good to go. Now you can feel like you are living in a high end international
hotel as you have access to times and dates all over the world.

As always, have fun !

Resources

The following resources may be of use:

Information about NTP can be found all over the Internet. See http://www.ntp.org/ for detailed
information.

Information about timezones can be found here:
https://en.wikipedia.org/wiki/List_of_UTC_time_offsets

Information about programming the ESP8266 in the Arduino environment can be found at:
github.com/esp8266/Arduino and in my articles previously mentioned.

Information about the NodeMCU Amica can be found at: www.electrodragon.com/product/nodemcu-
lua-amica-r2-esp8266-wifi-board/.

Page 59

Chapter Four - World Clock

Information about the Adafruit 1.8” TFT SPI LCD display can be found at:
http://www.adafruit.com/products/358. Information about the Sainsmart display can be found at:
http://www.sainsmart.com/sainsmart-1-8-spi-lcd-module-with-microsd-led-backlight-for-arduino-
mega-atmel-atmega.html.

The ST7735 display driver library can be found at: https://github.com/sumotoy/TFT_ST7735

The Time library can be found at: https://github.com/PaulStoffregen/Time.

The Timezone library can be found at: https://github.com/JChristensen/Timezone.

Page 60

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

Figure One
ESP8266 World Clock Wiring Diagram / Schematic

Page 61

Chapter Four - World Clock

Figure Two
The ESP8266 World Clock Breadboard

Page 62

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

Figure Three
Initial WiFi Connection Display

Page 63

Chapter Four - World Clock

Figure Four
Typical World Clock Timezone Display Page

Page 64

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

Figure Five
Another World Clock Timezone Display Page

Page 65

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

Chapter Five - Nixie Tube Clock

Introduction

For some unknown reason I have always wanted to build a Nixie Tube clock and now I finally have.
For a long time I looked around for a nice kit but they always cost more than I was willing to pay.
While on eBay recently I saw an Arduino Nixie Tube Shield for a reasonable cost so I decide the time
to build a Nixie Tube clock was now. This is a fully assembled and tested shield which was meant for
connection to an Arduino Uno. It had all the required hardware like a high voltage power supply for the
tubes, a real time clock chip with battery backup and the switches necessary to set the time and date. I
decided to get the clock working and then decide how to package it.

I, however, have had my fill of clocks that require any kind of ongoing maintenance on my part like
setting the time / date and changing the time for Daylight Savings Time (DST). Each time DST occurs
I have to go around my home and change the time on all of the clocks and then do the same for my
cars. No more. Any clocks I build going forward will perform these tasks automatically.

To this end, I decided to use an ESP8266 (a NodeMCU Amica module actually) in place of the
Arduino Uno this shield was designed for. This would give my clock access to the Internet as the
ESP8266 has built in WiFi capabilities. With Internet access my clock could get the time by polling
Network Time Protocol (NTP) servers on the Internet. This is the same technique personal computers
use to set their time. From NTP time the clock could calculate the current date so my Nixie Tube clock
would always display accurate time and date information. Going further my software incorporates a
Timezone library that understands DST changes in my location so my clock automatically adjusts for
that as well. Perfect, a clock that requires absolutely no ongoing maintenance on my part.

Maybe you should build a Nixie Tube clock of your own. The design incorporates display technology
from the past with state of the art modern embedded electronics, a nice combination.

Clock Operation

Before getting into the details of this build I want to give you an idea of how the clock works.

After power is applied to the Nixie Tube clock there will be a short delay as the clock accesses the
Internet for NTP time. After that delay the clock does what is called the anti-poisoning function which
runs each tube through all the numeric digits four times. If this is not done periodically, the unused
digits will slowly darken to the point of being unusable. As a mater of fact the clock runs this anti-
poisoning function at the top of each hour.

The Nixie Tube shield has RGB LEDs under each Nixie Tube which are controlled via the custom
software I have written. During the normal operation of the clock the color of the LEDs change over
the course of time. The complete spectrum of colors is displayed in a twelve hour period if the clock is
running in 12 hour mode and over a twenty four hour period if the clock is in 24 hour mode. The LEDs

Page 67

Chapter Five - Nixie Tube Clock

change colors in a subtle way over the course of a day.

Continually displaying just the time on the Nixie Tube clock can get a little boring so I have built
events into the software to liven things up a bit. There are three defined events: the 10 minute event
causes the clock to change momentarily from the display of time to the display of the date; the 15
minute event which causes the clock to perform a little light show by running the RGB LEDs under the
Nixie Tubes through all the colors of the rainbow; and finally the top of the hour event which performs
the anti-poisoning function described above. After the events have completed, the normal display of
time is resumed.

Finally, the clock's software turns off the Nixie Tubes at a predefined time in the evening and turns
them back on in the morning. This is done to lengthen the lives of the Nixie Tube's by turning them off
when no one is around to see the time.

Hardware

I bought the Arduino Nixie Tube Shield from gra-afch.com on eBay for about $94 US. See Figure One.
It came fully assembled and tested. It has all of the high voltage circuitry required for the tubes, a RTC
chip with backup battery and switches used to set the time and date. It is meant to be used with an
Arduino Uno which is not supplied. This is one of the cheapest Nixie Tube clock assemblies I have
ever come across.

To verify that the shield worked I plugged on an Arduino Uno and loaded the Arduino Uno code from
gra-afch. As expected it worked perfectly. The shield seems to be well constructed with SMT
components and uses quality parts throughout. Figure Two shows the shield in operation with an
Arduino Uno.

As mentioned I wanted to drive my Nixie Tube clock with an NodeMCU Amica module so I built the
NodeMCU module onto a small piece of pref board that has the same form factor as an Arduino Uno.
See Figure Three. This allows the NodeMCU module to plug directly onto the Nixie Tube shield in
place of the Arduino Uno with no additional wiring being necessary. Since I was going to use NTP as
my time source I would not be using the RTC chip or any of its support circuitry on the shield other
than the high voltage power supply and the Nixie Tube drive circuitry.

I built a 5 volt DC voltage regulator onto the pref board to reduce the 12 volt power from the shield
down to 5 volts for the NodeMCU. This was probably unnecessary but meant the onboard NodeMCU
voltage regulator would not have to dissipate so much power allowing the module to run cooler which
is always a good thing for electronic circuitry.

Parts list follows:

Part Description Source

NodeMCU Amica Module 32 bit CPU with WiFi electrodragon.com

Page 68

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

Part Description Source

Power Adapter 12 Volt DC 2 Amp minimum amazon.com

5 Volt Voltage Regulator
(optional)

7805 or equivalent voltage
regulator in TO-220 case

adafruit.com

2x 100 uF 25 volt capacitors
(optional)

Filter capacitors Radioshack

2x 0.01 uF capacitors
(optional)

Filter capacitors Radioshack

Pref board
shaped like an Arduino Uno

For building circuit onto Radioshack

Connectors 2.54mm 40 Pin Female Single
Row Pin Header Strip

Ebay

Power connector 5.5mm X 2.1mm DC Power
Female Socket Panel Mount

amazon.com

Additional materials for packaging depend upon how you package the clock.

The connections between the NodeMCU module and the Nixie Clock shield are as follows:

NodeMCU Pin Shield Pin Signal / Function

D5 SCK SPI clock

D7 MOSI Master Out Slave In
data from NodeMCU to shield

D8 LE Latch Enable

D9 DOT1 Neon dot 1

D9 DOT2 Neon dot 2

D0 PWM1 Green LED drive

D1 PWM2 Red LED drive

D2 PWM3 Blue LED drive

D3 SHTDN High voltage enable

GND GND Ground connection

Vin VIN
This voltage is reduced by an

12 volts from shield

Page 69

Chapter Five - Nixie Tube Clock

onboard regulator. 5 volt output
of regulator feeds Vin pin of the

NodeMCU module.

Software

To gain access to the Internet the NodeMCU ESP8266 must be configured to talk to the local WiFi
network. Whereas the SSID and password of the WiFi network could be hardcoded into the clock's
software I decided to use the WiFi Manager library (see https://github.com/tzapu/WiFiManager for
details) which allows the WiFi credentials to be set via a web interface. Use of the WiFi Manager
library means the clock can be moved between WiFi networks without changes to the code being
necessary. Here is how it works.

When the program is first started the ESP8266 creates a wireless access point (AP) called NixieClock
that the user needs to connect to. Then if the user points his/her browser to 192.168.4.1, a page is
presented that allows the credentials for the actual WiFi network to be entered. This only needs to be
done once since the credentials will be stored in the ESP8266's EEPROM and will be used from that
point forward. If, at some point in the future, the ESP8266 cannot connect to the WiFi network using
the stored credentials, it will again create the NixieClock access point to allow new WiFi credentials to
be entered. Pretty slick if you ask me.

All of the Nixie clock software was developed using the Arduino IDE version 1.8.0. The sketch is
called ESP8266_NTPNixieClock.ino and when you load it into the IDE you will be presented with four
tabs for the four files that make up the sketch. The purpose of each file is spelled out below:

File Function

ESP8266_NTPNixieClock.ino This is the main sketch file which coordinates the operation of the
clock. The setup() function initialized the shield driver, sets up SPI,
runs the WiFi Manager if required, initializes the NTP code and then
runs the anti-poisoning function for the Nixie tubes.

LEDControl.h Has code for controlling the RGB LEDs which are located
underneath each of the Nixie tubes on the shield. PWM via
analogWrite is used to control the RGB LEDs giving a full 24 bit
range of colors. Eight of the most common colors are defined in this
file.

NTP.h This file contains the code necessary to poll a NTP provider
(time.nist.gov) across the Internet for the current time expressed in
seconds since Jan 1, 1970 midnight UTC/GMT. UDP networking is
used for this communication.

NixieTubeShield.h This is the driver for the shield. It controls the high voltage power

Page 70

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

File Function

supply, controls driving the two neon bulbs, and most importantly
controls sending 60 bits of serial data to the Nixie tubes (10 bits for
each tube) every time the show() function is called. The show()
functions uses a finite state machine (FSM) for its operation.

Before you can use the Nixie Tube clock sketch you must configure it for your use. At the top of the
main sketch file there is a section for user configurable items shown below:

// ***

// Start of user configuration items

// ***

// Name of AP when configuring WiFi credentials

#define AP_NAME "NixieClock"

// Checks WiFi connection. Reset after this time, if WiFi is not connected

#define WIFI_CHK_TIME_SEC 60

#define WIFI_CHK_TIME_MS (WIFI_CHK_TIME_SEC * 1000)

// Set to false for 24 hour time mode

#define HOUR_FORMAT_12 true

// Nixie tubes are turned off at night to increase their lifetime

// Clock off and on times are in 24 hour format

#define CLOCK_OFF_HOUR 23

#define CLOCK_ON_HOUR 07

// Suppress leading zeros

// Set to false to having leading zeros displayed

#define SUPPRESS_LEADING_ZEROS true

// Define the timezone in which the clock will operate

// See the Timezone library for details

// US Mountain Time Zone (Denver, Salt Lake City)

TimeChangeRule usMDT = {"MDT", Second, Sun, Mar, 2, -360};

TimeChangeRule usMST = {"MST", First, Sun, Nov, 2, -420};

Timezone TZ(usMDT, usMST);

// ***

// End of user configuration items

// ***

Page 71

Chapter Five - Nixie Tube Clock

Most of these entries should be self explanatory from the comments provided and you should make any
changes necessary to make your Nixie clock operate as you want it to. The suppress leading zeros
define turn off the leading digits for time and date display if the values to be displayed are less than ten.
Information about TimeChangeRules and Timezones can be found in the World Clock article.

Once you have made your configuration changes you can compile and upload the resultant code to the
NodeMCU device via the USB connection.

Packaging

I did not want to build my state of the art Nixie Tube clock into a boring rectangular box so I decided
instead to build it into an elliptical shape.

The process started by printing out an ellipse of the proper size (4 3/8” x 11”) and gluing it to a piece of
1/8" MDF. I then cut the MDF to shape and drilled a series of holes around the ellipse equal distant
from the edges. This became a template for my router for machining the various parts I needed. See
Figure Four.

I then attached the template to a piece of 3/4" Baltic Birch which was slightly larger than the template
using double sided tape and used a flush trim router bit with a bearing to cut the wood to shape. The
bearing runs along the template making the router cut out the exact shape. I then drilled all of the hole
in the template through the wood and then used a jig saw to saw out the middle of the ellipse. See
Figure Five. I made two of these that I glued together as the clock's base needed to be about 1 1/2"
deep.

I again used the template and double sided tape to create the top out of black 1/8" plastic. After
carefully measuring the positions of the Nixie Tubes, I drilled holes in the top for the six tubes and the
two smaller neon bulbs. See Figure Six. I used the template once more to create the bottom as well out
of the same plastic material.

After gluing the two sections of the chassis together and sanding them to 240 grit I stained them with
mahogany stain. I attached four cabinet knobs to the bottom to use as feet to give my clock a modern
look. Figure Seven show all of the chassis pieces together to get an idea of how things fit. The knob
feet screw onto the bottom plastic piece which in turn screws onto the wooden chassis but there are no
exposed screws anywhere else.

Figure Eight shows two views of the finished clock. Figure Nine shows the rear view of the clock with
only a power connector. As noted there are no switches or buttons to set the time or date or to indicate
daylight savings time. Setting of the clock is all done automatically via NTP.

Figure Ten shows the clock in operation. My clock runs in 12 hour time and I suppress leading zeros
which is why the left most tube is off. The displayed time is 5:58:14. The clock can also run in 24 hour
time by making a small change in the software.

Of course this is just one packing possibility. If you use your imagination I am sure you can come up
with other cool packing ideas.

Page 72

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

Conclusions

The use of the Nixie Tube shield makes building a Nixie Tube clock a lot simpler. The use of NTP time
and the custom software provided with this article make the clock essentially maintenance free from
the user's perspective. And as I stated earlier this design incorporates display technology from the past
with state of the art modern embedded electronics, how cool is that?

Page 73

Chapter Five - Nixie Tube Clock

Figure One

The Nixie Tube Shield

Page 74

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

Figure Two

Shield tested with Arduino Uno plugged on

Page 75

Chapter Five - Nixie Tube Clock

Figure Three

Arduino Uno like form factor for the NodeMCU Amica module

The connectors correspond to the layout on an Arduino Uno module.

Page 76

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

Figure Four

The Ellipse Template

Ellipse dimensions are 4 3/8” x 11”

Page 77

Chapter Five - Nixie Tube Clock

Figure Five

Ellipse Chassis Taking Shape

Page 78

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

Figure Six

Template used again to machine top and bottom of chassis

Large holes in the top are for the Nixie tubes and smaller holes are for the neon bulbs

Page 79

Chapter Five - Nixie Tube Clock

Figure Seven

Test fitting pieces together

Page 80

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

Figure Eight

The finished clock in two views

Page 81

Chapter Five - Nixie Tube Clock

Figure Nine

Rear view of the clock showing the power connector

Notice no buttons or switches for time/date setting

Page 82

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

Figure Ten

Clock in operation

Time is 5:58:14

Page 83

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

Chapter Six - RSS News Reader

Introduction

I admit it; I am a self proclaimed news nut. I don't know, this might actually be an undiagnosed illness
since I look at the news on the web constantly during the day and then watch the news in the evenings
on TV. There is always something going on in our world (for better or worse) that I don't seem to want
to miss. So when I was thinking about other applications for the amazing ESP8266 I thought why don't
I write an RSS reader so that I can monitor the headlines from many different news sources from
around the world. Then if something catches my attention, I can open up my laptop and read the full
story.

For those of you who aren't familiar with RSS, according to Webopedia:

“RSS is the acronym used to describe the de facto standard for the syndication of Web content. RSS is
an XML-based format and while it can be used in different ways for content distribution, its most
widespread usage is in distributing news headlines on the Web”.

An RSS XML document, also called a feed or channel includes summarized headline text along with
metadata, like publication date and author information.

The RSS acronym itself has had numerous definitions over time. Originally it meant RDF Site
Summary, later RSS was defined to mean Rich Site Summary. Currently RSS is understood to mean
Really Simple Syndication. Regardless of the true definition, in this article I will use the term RSS to
mean an Internet feed of headlines from one or more news/information sources.

If you have been reading Nuts and Volts regularly you probably have noticed that I have written quite a
few article about putting the NodeMCU Amica module with embedded ESP8266-12 chip to work.
These articles include:

1. “Meet the ESP8266: A Tiny, WiFi Enabled, Arduino Compatible Micro Controller" in the
October 2015 issue.

2. "Thinking of You" article in the November 2015 issue.

3. “ESP8266 NTP Clock” article in the June 2016 issue.

4. “ESP8266 Weather Clock article in the November 2016 issue.

All of these projects were developed within the Arduino integrated development environment (IDE)
using the ESP8266 as a relatively high performance micro-controller with a built in WiFi interface.
That is to say no other micro-controller was used to control the ESP8266 as a peripheral like in so
many other ESP8266 projects I see on the Internet. Hosting applications directly on the ESP8266 itself
both drives project costs down and increases reliability at the same time as a result of fewer parts and

Page 85

Chapter Six - RSS News Reader

less software involved.

In this article I am going to describe an RSS News Reader application I built on the same hardware as
my previous two articles. That is, a NodeMCU Amica module, an Adafruit 1.8” TFT LCD display, a
pushbutton switch, USB cable, USB power supply and some wire. With this hardware you can upload
the NTP Clock software and have a auto setting time and date clock; upload the Weather Clock
software and get current and forecasted weather conditions for your location along with the NTP clock
functionality; or the software I provide with this article to have an RSS News Reader all without
changing a single wire or component.

As supplied, the software for this RSS News Reader has hardcoded RSS feeds for NPR, CNN, AP,
L.A. Times, BBC, Reuters and USAToday and it is a simple matter to add your own feeds and/or delete
or reorder any that I have supplied.

Once the RSS News Reader is configured it will connect to your local WiFi network and then make a
request for headlines from NPR (which happens to be at the top of the feed list but more on that later)
and will continuously cycle through the display of headlines by horizontally scrolling them across the
LCD. After all headlines have been displayed, a new request to NPR will be made and the process
repeats.

If, however, you press and hold the feed advance pushbutton until the last headline has scrolled off of
the screen you will advance to the next feed on the feed list and its headlines will then be displayed.
When a headline has an associated publication date, that will be displayed on the LCD as well.

To summarize, the RSS News Reader will continuously display headlines from the selected news feed
until the feed is changed using the feed advance pushbutton or it is powered down. Since the RSS
News Reader makes a new request every time all of the headlines have been displayed, the headlines
you see will be as up to date as the news source itself.

Hardware

As mentioned, the RSS News Reader uses the same hardware as used in my two previous ESP8266
articles. To save you from going back and (re)reading previous articles, the hardware information is
repeated here starting with the parts list.

Page 86

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

Part Source

NodeMCU LUA Amica R2 Module Electrodragon.com

1.8” TFT SPI LCD Display (blacktab) Adafruit.com - Product ID: 358

Pushbutton Switch SPST Radio Shark or anywhere else

USB Cable - USB A to USB Micro B Radio Shack or anywhere else

USB Power Supply
capable of at least 1 amp @ 5 volts

Radio Shack or anywhere else

Hook up wire and breadboard Radio Shack or anywhere else

Figure One shows a Fritzing connection diagram/schematic for the RSS News Reader. Figure Two
shows the design wired up on a breadboard. The RSS News Reader is powered via a USB cable and a
USB power supply module although it could be powered by plugging it in to your computer.

The wire by wire connections are shown below because they might not be clear from the Fritzing
diagram.

NodeMCU Amica Pin Adafruit 1.8” LCD Display
Connection

News Feed Advance
Pushbutton SPST Switch

D1 (GPIO 5) SW1

D3 (GPIO 0) LITE

D4 (GPIO 2) D/C

D5 SCK

D7 MOSI

D8 (GPIO 15) TFT_CS

3V3 VCC

GND Gnd SW2

The GPIO designations are shown above as that is how these digital I/O lines are referred to in the
Arduino code.

The Adafruit LCD display also has a micro SD memory card interface which can be used with the
ESP8266 but it was not needed for this project.

Software

As mentioned, the software for the ESP8266 RSS News Reader was developed using the Arduino IDE.
See my previous articles and/or the Resources section for how to set-up the Arduino IDE on your
computer for targeting ESP8266 type devices. Make sure to select “NodeMCU 1.0 (ESP-12E
Module)” as the board type in the tools menu.

Page 87

Chapter Six - RSS News Reader

The ESP8266 RSS News Reader software should be available in the code directory associated with this
document. The file is called ESP8266_RSSNewsReader.ino. To use this software, copy/move the
ESP8266_RSSNewsReader directory from the code directory into your Arduino directory.

While the hardware is about as simple as it gets, the software is somewhat complicated and is made up
of the following files:

File Description

ESP8266_RSSNewsReader.ino Main program. Initializes the hardware and
software, logs into the local WiFi network,
initializes the RSS reader callbacks and prepares
the loop() function for accessing and retrieving the
selected RSS feed.

ESP8266_ST7735.cpp LCD driver code specific to the Adafruit 1.8”
(blacktab) display utilizing the hardware SPI
interface of the ESP8266.

ESP8266_ST7735.h Header file for the LCD driver code above

RSSReader.cpp Implementation of the RSSReader class. The
RSSReader has a lot of functionality including
implementing a crude parser for extracting
information from RSS XML documents, has code
for parsing URLs to extract the host and the path
components and the code that requests the RSS
documents from news sources across the Internet.
It also manages the feed advance pushbutton.

RSSReader.h Header file for the RSSReader code above

TGFunctions.h Misc functions for formatting text and graphical
data for display on the LCD.

TextScroller.cpp Class for horizontally scrolling text strings on the
LCD display.

TextScroller.h Header file for the TextScroller code above

Icons.h Data for the WiFi icon used on the login screen in
xbm format.

In addition to the files listed above, a modified version of the Adafruit_GFX library is required. This
library provides text and graphics functions for the LCD display when connected to an ESP8266
device. Whereas the stock library is available at:

https://github.com/adafruit/Adafruit-GFX-Library

Page 88

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

the modified version of this library I used to develop the RSS News Reader is included in the code
directory associated with this document. Remember libraries must be installed in the arduino/libraries
directory on your development computer and the Arduino IDE must be restarted to recognize them.

RSS News Reader Software Operation

Before you can use the RSS News Reader you must supply login information for your WiFi network.
You do this by opening up the main sketch/program file ESP8266_RSSNewsReader.ino and finding the
user configuration section shown below:

// ***
// Start of user configuration items
// ***

// Set your WiFi login credentials
const char * WIFI_SSID = "xxxxxxxx";
const char * WIFI_PASS = "xxxxxxxxxxx";

// ***
// End of user configuration items
// ***

This information allows the ESP8266 to login to your WiFi network as required to access the RSS
feeds across the Internet. The login screen shown in Figure Three is displayed on the LCD while the
login process is occurring. It will be replaced with the RSS News Reader Screen shown in Figure Four
when the login process completes successfully. Check your WiFi login credentials, WIFI_SSID and
WIFI_PASS, if the login screen doesn't go away.

You'll also notice towards the top of the sketch this array of character strings.

// Array of feed URLs

const char *rssFeedURLs [] = {

 "www.npr.org/rss/rss.php?id=1001",

 "http://rss.cnn.com/rss/cnn_topstories.rss",

 "http://feeds.bbci.co.uk/news/rss.xml",

 "http://hosted.ap.org/lineups/SCIENCEHEADS-rss_2.0.xml?SITE=OHLIM&SECTION=HOME",

 "http://www.latimes.com/rss2.0.xml",

 "http://rss.cnn.com/rss/cnn_tech.rss",

 "http://feeds.reuters.com/reuters/topNews",

 "rssfeeds.usatoday.com/usatoday-NewsTopStories",

};

This is the RSS feed list with the NPR feed as the first entry. That is why the first feed displayed by
default is NPR. As you use the feed advance pushbutton, you move down the list one RSS feed at a
time and when you increment past the last entry you wrap around to the first again.

Page 89

Chapter Six - RSS News Reader

You can easily delete feeds from this list or rearrange their order to suit your preferences. You can even
add feeds to this list by googling the news provider you are interested in and looking for the URL they
publish for their RSS feed(s). Once you have that, insert it into the feeds list, recompile the code and
upload it to the NodeMCU Amica module and you will be all set.

Most of the remaining code in the ESP8266_RSSNewsReader.ino sketch file is concerned with
declaring instances of the lcd driver, the text scroller and the RSS Reader classes and initializing them.
The loop() function in the sketch continually calls the read function of the RSSReader class passing the
URL of the RSS feed to display.

The code for the RSSReader is the most complex in this application. The complexity is a result of
having to request the headline information from a news source and then to extract the information of
interest from the XML returned from the source. For those not familiar with XML:

XML is a software and hardware-independent tool for storing and transporting data in human readable
format.

• XML stands for EXtensible Markup Language
• XML is a markup language much like HTML
• XML was designed to be self descriptive
• XML is a W3C Recommendation

More information on XML can be found in the links in the Resource section.

Usually in a RSS News Reader application hosted on a personal computer, a full blown XML parser
would be employed to extract the headlines and other pertinent data. Unfortunately, I couldn't find a
XML parser that could fit in the memory available on the ESP8266 so I had to use a different approach
for data extraction.

Without going into to much detail, the portions of the RSS XML that I wanted to retrieve resemble the
following.

<title>This is some headline from a news feed</title>
<description>This optional component of the news story provides more detail than the title</description>
<pubDate>Fri, 06 Nov 2015</pubDate>

All of the components have the same format. A start tag like <title> followed by the actual content
followed by an end tag </title>. Whereas the title portion of a news headline is required in the RSS
XML, the description and the pubDates are not. Note, this application doesn't currently use the
description information from the XML even though the code supports retrieving it.

To extract data from the XML I wrote a Finite State Machine or FSM that is feed every character
returned from the news source over the Internet. The FSM ignores all characters until it sees an opening
<. Then it starts to listen for the tags of interest which in this case are title, description and pubDate. If

Page 90

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

it finds one of these it starts collecting the text starting after the > in the start tag until it see < which is
the start of the end tag. Once the text is collected a callback (more on callbacks shortly) is made to the
main program passing this text. After the callback completes, the FSM goes back to listening for an
opening < character and the process repeats. The complete XML text is processed this way. This is not
as elegant or as easy of a solution to parsing XML as using a real XML parser but it gets the job done.

The RSSReader class has three functions that allow application code to register interest in the data
extracted from the RSS XML. They are:

void setTitleCallback(pt2Function titleCallback);
void setDescCallback(pt2Function descCallback);
void setPubDateCallback(pt2Function dateCallback);

where the argument to these functions is a function pointer defined as follows:

// A function pointer for callback

typedef void (*pt2Function)(char *);

A pt2Function is a pointer to a function that takes a single argument which is a pointer to a char string
and returns nothing or void. Because the code in the main sketch is interested in both the title and
pubDate information from the RSS XML it defines the titleCallback and the pubDateCallback
functions shown below:

// Callback called every time a title tag is found in the RSS XML
void titleCallback(char *titleStr) {

 char buffer[TITLE_BUFFER_SIZE];

 // Make buffer empty
 buffer[0] = '\0';

 // First add a leading space char to make reading easier
 strcpy(buffer, " ");

 // Then add the title string
 strcat(buffer, titleStr);

 // Then add some trailing spaces
 strcat(buffer, " ");

 // Scroll the composite text
 textScroller.scrollText(SCROLL_Y, buffer);
}

// Callback called every time a pubDate tag is found in the RSS XML
void pubDateCallback(char *dateStr) {

 drawCenteredText(DATE_Y, 1, dateStr, COLOR_RED, COLOR_BLACK);
}

Later in the setup() part of the code the RSSReader is made aware of these functions via the following:

 // Setup callbacks for title and pubDate tags in RSS XML
 reader.setTitleCallback(&titleCallback);
 reader.setPubDateCallback(&pubDateCallback);

At runtime the following sequence of events occur:

Page 91

Chapter Six - RSS News Reader

1. A request is made to a news source for its RSS information
2. The returned XML is parsed by the RSSReader code and when a title element is found, the

titleCallback function is called and when a pubDate element is found, the pubDateCallback
function is called.

3. The titleCallback formats the title data and sends it to the text scroller for horizontal scrolling
across the LCD display.

4. The pubDateCallback simply displays the dateString passed in centered on the LCD display.

Using callbacks is a way to keep the code organized and structured and to prevent the code from
becoming one big hard to maintain mess.

Conclusions

Now by using a single circuit you can have a auto setting clock, a weather clock or a RSS news reader.
If you are a self proclaimed news nut like myself why don't you build one of these devices for your
desk so you are never very far away from the latest headlines.

Resources

The following resources may be of interest:
Information about XML can be found at: http://www.w3.org/XML/.

Information about programming the ESP8266 in the Arduino environment can be found at:
github.com/esp8266/Arduino and in my four articles mentioned previously.

Information about the NodeMCU Amica can be found at: www.electrodragon.com/product/nodemcu-
lua-amica-r2-esp8266-wifi-board/.

Information about the Adafruit 1.8” TFT SPI LCD display can be found at:
http://www.adafruit.com/products/358.

Page 92

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

Figure One
Fritzing Connection Diagram / Schematic

Page 93

Chapter Six - RSS News Reader

Figure Two
RSS News Reader Breadboard

Page 94

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

Figure Three
WiFi Login Screen

This screen will be displayed during the WiFi login process

Page 95

Chapter Six - RSS News Reader

Figure Four
RSS News Reader Screen

The large font is the scrolling news headline

Page 96

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

Chapter Seven - NeoPixel LED Tree

Introduction

Just when I thought I was done building “LED blinky” things (my house is filled with them) I see
something on the Internet that catches my eye and off I go again building something new. To my
friends this is now a standing joke and they, in fact, call me “Mr. Blinky”. Oh well I could be called
worse.

In this case many things caught my attention and the result is the NeoPixel LED tree described in this
article. The NeoPixel LED tree:

• Is beautifully made from laser cut 3 mm Baltic birch plywood.
• Is powered by a NodeMCU Amica ESP8266 32 bit WiFi enabled processor
• Has 93 individually addressable NeoPixel LEDs allowing for a large number of display patterns
• Is remote controllable from any browser on your WiFi network
• Has 50 display patterns built in including some with a Christmas theme.
• Has an Auto mode which randomly selects display patterns so you get a taste of every display

pattern the tree has available.

I cannot take credit for much of this design because I basically merged things I found on the Internet
together, and with my knowledge of the ESP8266, the result was this project. Specifically:

• I came across the mailable laser cut Christmas tree card project on hackaday.io
• I found a rather inexpensive set of NeoPixel LED rings (93 LEDs in all) for sale on Amazon
• I found software that designs laser cut flex boxes. A flex box is used for the base of the tree.
• I found a NeoPixel special effects library for the ESP8266 that provided most of the display

patterns and an example program from the same library that was the basis of the tree remote
control program I wrote.

• I used the ESP8266 WiFiManager library to allow the tree to connect to any WiFi network
without having to hardcode WiFi credentials into the program. This is very handy when you
move the tree between WiFi networks or locations.

• I used the ESP8266 ArduinoOTA (OTA stands for Over The Air) library that allows the tree's
software to be updated wirelessly without having to physically connect a USB cable. This helps
prevent damage to the tree because updates are hands off.

Links to all of the stuff I found on the Internet are provided in the Resources section.

Laser Cutting Tree Pieces

When I first came across the laser cut Christmas tree card project I quickly fell in love with it. Each
piece of the tree (see Figure One) is like a snow flake made out of wood. Also, the light color of the

Page 97

Chapter Seven - NeoPixel LED Tree

Baltic birch contrasted nicely with the brown burn marks caused by the laser cutter.

Which brings me to the laser cutter. Where was I going to find one to use or was I going to have to pay
some company to cut the tree out for me? Luckily it was brought to my attention that many of the
public libraries in the Pikes Peak region where I live have Maker Spaces with laser cutters (and a lot of
other equipment) that are available to the public to use under the supervision of library staff. This was
fantastic in that not only was using the laser cutter free to use (you must supply your own materials) but
there were knowledgable and friendly staff on hand to help me get going. In preparation for using the
laser cutter I was given a quick talk on safety around the laser cutter and shown around a display that
showed the many different materials the laser cutter can be used on including: stone, brick, wood,
paper, plastics, fabric, etc. I may try to engrave some stones later for Christmas presents. With the
prerequisites out of the way, my library card was stamped allowing me to use the maker space
equipment whenever the space is open. When I then saw the Epilog Zing laser cutter (see Figure Two)
in action I immediately gained an appreciation for the capabilities and the precision possible with this
device.

The library's Epilog laser cutter is driven by a program called Corel Draw which I thought was long
extinct but I was mistaken. Current versions of Corel Draw have many features that make it suitable for
driving a laser cutter. I have been successful in using design files in both svg and ps (postscript)
formats with Corel Draw. Using Corel Draw with the laser cutter is pretty easy once you have done it a
few times. I had some initial issues but got them worked out with the help of the library staff. The
Epilog laser cutter comes with a handy chart that tells you how to set the power level and the speed of
laser for the materials you are using. The 30 watt laser easily cuts through the thin birch plywood used
for the tree and is amazing to watch.

The parts required for the tree are as follows:

Quantity Description Size Source

2 Baltic birch for tree. Half of the tree
is laser cut from each piece

6” x 8” Woodcraft, Home
Depot, Lowe's or any

wood supply store

? Baltic birch for the flex box used for
the base of the tree

6” x 10” Same as above

1 Round Aluminum Tube
6 mm outside diameter

 About 5 3/4” long Ebay, hobby shops

You may have noticed the question mark for quantity in the table above. The reason for this is the laser
cut flex box base is very fragile due to flexible corners the box's have so I ended up having to cut five
of these boxes before I got one that didn't break during assembly. The secret is to completely soak a
paper towel with water and then wrap the three pieces that make up box together and place them in a
microwave for about a minute. Set the wrapped wood aside for a couple of minutes after removal from
the microwave to allow the plywood to thoroughly steam before attempting assembly. Next very
carefully stretch and hold the long piece that makes up the box sides a couple of millimeters to widen

Page 98

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

the wooden corners. Then proceeding very slowly, wrap the side piece around the bottom piece locking
the tabs in place as you go. Once you get the wrapping done, place the top piece onto the box and sit
the box aside and allow it to dry completely before proceeding. Once the box is dry it will retain its
shape so you can take the top or bottom off to work on the electronics that will be placed inside.

I believe the small size of the flex box base is partially responsible for its fragility. Larger flex boxes
probably wouldn't be quite as fragile because there would be more material in the flexible corners. I
have included the postscript design file for these flex boxes in the zip file available from the Nuts and
Volts website associated with this article. The general design file called flexbox_v.1.3.ps can be opened
in any text editor and the boxlength, boxwidth and boxheight variables can be changed to produce
boxes of any size. I have also include treebase.svg which is the design for the tree base used here. This
file was created by copying flexbox_v.1.3.ps to a different file, opening it up in a text editor and then
setting the user defined parameters as follows:

% Define box parameters -- This is the size of the box you want
/boxlength 3.0 inch def % long dimension of flat side of the box
/boxwidth 1.5 inch def % dimension across the hinge
/boxheight 2.5 inch def % short dimension across flat side of the box
/cornerradius 0.5 inch def % radius of the hinge
/materialthickness 0.125 inch def % thickness of the material which will become the box

I then used a free online service to convert the modified postscript file to an svg file because I thought
that was necessary for use with Corel Draw. I have since discovered Corel Draw can work just as well
with the original postscript file so no conversions are necessary. The design for the base is shown in
Figure Three.

Laser cutting the tree was much easier and successful on the first attempt. I cut two copies incase I
damaged any of the pieces. The design for the tree is shown in Figure Four. Once cut the tree pieces are
fragile and need to be handled with care. I should note that not all of the pieces from the tree design are
used in the NeoPixel LCD tree. Only sections 1, 3, 4, 6 and 8 and the star are used. The other laser cut
pieces could be used for Christmas tree decorations or perhaps even ear rings.

The Electronics

The electronics used in the tree couldn't be much simpler nor easier to put together. The required parts
are shown below:

Item Description Source

NeoPixel ring set Mokungit 93 Leds WS2812B
WS2812 5050 RGB LED Ring

Lamp Light with Integrated
Drivers.

Includes rings of 32, 24, 16, 12
and 8 LEDs along with a single

stand alone LED

Amazon

NodeMCU Amica module 32 bit uC with WiFi interface Electrodragon.com

Page 99

Chapter Seven - NeoPixel LED Tree

Item Description Source

USB power supply Capable of 5 VDC @ 2.5 amps
minimum

Amazon, RadioShack

Capacitor 1000 uF @ 35 volts RadioShack

Capacitor .1 uF RadioShack

Capacitor .01 uF RadioShack

The NeoPixel ring set is shown in Figure Five. The schematic for the tree electronics is shown in
Figure Six.

Building The Tree

Before beginning assembly of the tree the tree sections are glued to the NeoPixel rings as shown in
Figure Seven. I glued the single NeoPixel to the tree's star as well. I should note that the center hole of
each tree section is slightly smaller than the 6 mm support tube. I used a reamer to carefully enlarge
each hole to allow them to slide down the tube into position.

The tree is built from the base up. I started by fitting parts X, Y and Z together which make up the
tree's support structure. I used a small file to slightly taper the tabs so they would fit into the round disk
X. With that done I glued the round disk to the top of the flex box and then glued parts Y and Z to the
disk. I inserted the support tube into this assembly to keep the parts correctly aligned while the glue
dried. Once dried I drilled a small hole in what will be the back of the tree (Figure Eight) for the three
wires that connect the NodeMCU module in the base to the large NeoPixel ring which makes up the
first tier of the tree. Within the base I glued the NodeMCU module in place and then wired up the
electronics as shown in Figure Nine. With that done I reassembled the flex box base so it could support
the tree as it was being built.

The tiers of the tree are separated using laser cut spacers “a” and “b” where the “a” spacers have a
slightly larger outside diameter than the “b” spacers. I used “a” spacers towards the bottom of the tree
and “b” spacers towards the top. I used five spacers between the base and the first tier, seven between
the first and second tiers, seven between the second and third tiers, 6 between the third and fourth tier,
five between the fourth and fifth tiers and five as well between the fifth tier and the star. I covered the
spacers and wires between the tiers of the tree with heat shrink tubing as it was important to hide the
wires as much as possible. Figure Ten shows this in detail. The spacers had to reamed as well so they
would fit over the support tube.

Wiring the NeoPixel rings neatly was somewhat difficult to do. Four wires must be soldered onto the
little pads of the NeoPixel rings. Each ring as a data input pad (DI), a 5V pad, a GND pad and a data
out (DO) pad. The DO pad of a lower ring must connect to the DI pad of the upper ring and the 5V and
GND connections are paralleled all the way up the tree. The DO of the 8 NeoPixel ring is wired to the
DI pad of the single NeoPixel LED glued to the tree's star. There is no connection from the single
NeoPixel LED's DO pad.

Page 100

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

Care must be taken when soldering these connections as it would be very easy to lift these pads if to
much heat were applied. Figure Eleven shows the completely assembled tree in operation.

Tree Software

The software for the NeoPixel LED tree was developed using the Arduino IDE. I used version 1.8.0 for
MacOS but you should be able to use the Arduino IDE on Windows as well. See my previous articles
or the Resources section for how to set-up the Arduino IDE on your computer for targeting ESP8266
type devices.

To use the OTA feature of the Arduino IDE you must allow the IDE to accept remote connections.
How this is accomplished varies depending upon the computer platform you are running on but usually
involves a change to your computer's firewall settings. Google “Enabling ArduinoOTA <your
platform>” to get the instruction appropriate for your computer.

The NeoPixel LED tree software should be available on the Nuts and Volts website in association with
this article. The file is called: Lindley_ESP8266NeoPixelTree.zip. To use this software, unzip the file
and copy/move the ESP8266NeoPixelTree directory into your computer's Arduino directory. The zip
file also contains the versions of the libraries I used during program development. It is important to use
these versions as different versions may not function correctly. These library zip files should be
unzipped and then moved into your arduino/libraries directory for use. It is best to install new libraries
before the Arduino IDE is started.

Whereas the electronic for this NeoPixel LED tree borders on the trivial, the software/firmware for the
tree is a bit more involved. The files which make up the program are described below:

File Description

ESP8266NeoPixelTree.ino The main program file that drives the NeoPixel
LED tree.

index.html.h Miscellaneous HTML snippets that support the
web UI

main.js.h Javascript functions used in the web UI

In addition to the files above, the following Arduino libraries are required:

Library Function Source

ArduinoOTA Allows the NeoPixel LED tree code to be
remotely updated after the initial upload.

Provided with the
esp8266/Arduino platform code

WiFiManager Allows the NeoPixel LED tree to change WiFi
credentials without having to make a code

change.

https://github.com/tzapu/WiFiM
anager

WS2812FX A NeoPixel LED special effects library for the A modified version of this

Page 101

Chapter Seven - NeoPixel LED Tree

Library Function Source

ESP8266. library is included in the article
download from Nuts and Volts.

Once you have the code and libraries in place, you must connect the NodeMCU device in your tree to
your computer using a USB cable. Next select the NodeMCU 1.0 board type from the Arduino IDE and
the port that is used to connect to your NodeMCU device. Once that is completed, you can compile the
code and if error free you can upload the code to your tree. Once this initial upload is successful you
can disconnect the USB cable and do any further updates remotely.

Remotely Controlling The Tree

Before you can remotely control the NeoPixel LED tree, you must first provide WiFi credentials so the
tree can connect to your local WiFi network. If the ESP8266 has not been connected to the WiFi
network previously it will create a wireless access point called, NeoPixelTreeAP, that you must connect
to with your computer. Once that is done, with a browser go to 192.168.4.1 and you will be presented
with a page for assigning credentials. When you click on the SSID of your network and then specify
the password, the ESP8266 should take down the access point and attempt to establish a connection to
your WiFi network. You can monitor the status of this process if you have the Arduino IDE's serial
monitor open. Once you establish a connection to the WiFi network the ESP8266 will remember the
credentials going forward. You should never have to go through this process again unless you move the
NeoPixel LED tree to another network or location.

With WiFi setup complete, change your computer back to your normal WiFi network and navigate
your browser to 192.168.0.3. If all is well you should see the web page (see Figures Twelve and
Thirteen) you will use to control the NeoPixel LED tree. In the middle of the page is a long list of
display pattern buttons that you can click on. If a display mode allows its color to be configured you
can click on the hue strip on the left to set a color and you can click on the middle strip to set the color's
saturation. At the bottom of the page you can change the overall brightness of the tree and the speed at
which the display patterns run. The Auto mode selects a new display pattern randomly every 30
seconds. It also selects a random color, random brightness and random speed the display pattern will
run with. The Off mode makes the tree appear to be off but it is still listening for display pattern
changes from the UI.

Final Thoughts

Did the world need yet another blinky thing? Probably not, but when has that ever stopped me from
building anything. The NeoPixel LED tree is a beautiful addition to my collection of blinky things and
would make a great gift for someone who likes such things. Show a child how to control the tree via a
browser and watch them sit for a long time clicking the screen and seeing how the tree reacts. It
initially surprised me how fast the tree reacts to changes made in the browser; it is virtually
instantaneous. Even without the LEDs lit up the laser cut tree is kind of nice to look at as the wood has
nice burned edges.

In its current form the NeoPixel LED tree is for decoration/fun only. There may be, however, some

Page 102

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

serious uses for such a device. The tree could be used as a night light in a young ones room. With
changes to the software the tree could be used for the “Thinking Of You” device I wrote about in the
November 2015 issue of Nuts and Volts. It could also be repurposed as a display showing whether the
stock market is up or down. It might also be programmed to inform you when it is time to standup and
take a break or to go home from work. The possible uses are almost endless.

This was a fun though rather challenging project to build mainly as a result of never having used a laser
cutter before and the problems I had with the flex box base. I learned a lot about using a laser cutter
that I am sure I can apply to future projects. I also learned that I would like to own a laser cutter but
that is another issue all together.

Resources

Information about the laser cut Christmas tree can be found at: https://hackaday.io/project/9222-laser-
cut-mail-able-christmas-tree

Information about laser cut flex boxes can be found at: http://www.thingiverse.com/thing:17240/#files

Information about Corel Draw can be found at: www.coreldraw.com

Information about programming the ESP8266 in the Arduino environment can be found at:
github.com/esp8266/Arduino.

Information about the NodeMCU Amica can be found at: www.electrodragon.com/product/nodemcu-
lua-amica-r2-esp8266-wifi-board/.

Information about the WiFiManager can be found at: https://github.com/tzapu/WiFiManager

Information about ArduinoOTA can be found at:
http://esp8266.github.io/Arduino/versions/2.0.0/doc/ota_updates/ota_updates.html

Information about the NeoPixel WS2812FX special effects library is available at:
https://github.com/kitesurfer1404/WS2812FX#ws2812fx---more-blinken-for-your-leds. Note this
project uses the modified version of this library available from the Nuts and Volts website.

Page 103

Chapter Seven - NeoPixel LED Tree

Figure One
Laser Cut Tree Parts Resemble Wooden Snow Flakes

As noted in the text not all pieces are used

Page 104

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

Figure Two
Epilog Zing Laser Cutter

Available for public use at my local library and maybe yours too

Page 105

Chapter Seven - NeoPixel LED Tree

Figure Three
Tree Base Design

Base is 3” wide x 2.5” deep x 1.5” tall and is laser cut from 3 mm Baltic Birch

Page 106

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

Figure Four
Tree Design from Thingiverse.com with items labeled

Page 107

Chapter Seven - NeoPixel LED Tree

Figure Five
NeoPixel Ring Set from Amazon

Page 108

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

Figure Six
Schematic Diagram

Page 109

Chapter Seven - NeoPixel LED Tree

Figure Seven
LED rings attached to tree segments with Goop glue
NodeMCU Amica device glued to base top as well

Base itself doesn't require glue to hold together

Page 110

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

Figure Eight
Tree Base Detail

Note the hole into the base for the wires. Heat shrink tubing is used to hide the wiring.
USB power supply wire extruding thru hole in back of base

Page 111

Chapter Seven - NeoPixel LED Tree

Figure Nine
Base Electronics

Black wires from USB power supply

Page 112

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

Figure Ten
Assembly Detail Close Up

Heat shrink tubing used to hide spacers and wiring between sections

Page 113

Chapter Seven - NeoPixel LED Tree

Figure Eleven
Finished and Operational NeoPixel LED Tree

Page 114

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

Figure Twelve
Top Portion of Web UI for controlling NeoPixel LED tree

Page 115

Chapter Seven - NeoPixel LED Tree

Figure Thirteen
Bottom Portion of Web UI for controlling NeoPixel LED tree

Page 116

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

Chapter Eight - Thinking Of You

Introduction

My family and friends are increasingly spread out across the country or even across the globe and
keeping in touch can be a problem. This is especially true for someone like myself who doesn't really
like to talk on the phone much. In addition, there are problems with people's hectic life styles and
conflicting schedules. When you think of your friend or family member you may be too busy to call
them that instant or if you do they may be to busy talk. Thus the spontaneity of the thought can and
usually does fade away.

I was thinking about these issues in relation to my sisters who are located across the US. I wanted
something that would virtually instantaneously let my sisters know I was thinking of them but that was
totally non intrusive. I wanted them to know without having to disrupt what they are doing with a
phone call or text message. And vice versa, when the thought struck them they could let me know they
were thinking of me as well.

With these thoughts in mind I designed what I call a Thinking of You or ToY device. These are small
Internet connected devices meant to be used in a home, apartment, work place or anywhere else with a
fixed Internet connection. They should be placed on a desk at the office or in the living room at home
where they can easily be seen and interacted with. Each ToY device has a single push button switch
and an RGB LED for user interaction.

ToY devices were designed to be used in groups. For example my family's group is made up of three
ToY devices: one for myself and one for each of my two sisters.

Each ToY device is programmed with WiFi info for each group member and assigned a colorful
lighting pattern for the RGB LED that identifies the member within the group. When these devices are
powered up (they are meant to be on all of the time) they connect to the local WiFi network and wait.
When someone in the group presses their button (indicating they are thinking of others in the group)
his/her pattern is displayed on each device no matter where they are in the world. When other members
of the group press their buttons in response, their patterns are appended to the pattern being displayed
so all members of the group know who responded. The ToY devices then continuously displays the
concatenated patterns for 30 minutes and then extinguish themselves until someone starts the process
again.

The ToY devices are built using an inexpensive module called a NodeMCU Amica that incorporate a
ESP8266-12 WiFi module with embedded application processor. I highly recommend you read my
previous article “Meet the ESP8266: A Tiny, WiFi Enabled, Arduino Compatible Micro Controller"
from the October 2015 issue of Nuts and Volts for background information on ESP8266 devices.

ToYs are really cool, easy to build, little devices that I plan on giving my sisters for Christmas. It is a
good thing my sisters don't read Nuts and Volts or the cat would now be out of the bag. Maybe you
should consider building these for your family as well.

Page 117

Chapter Eight - Thinking Of You

As a side note, I had some friends who live across town help me test this concept. I provided them with
a ToY device and I had one as well. As we are both early risers it always made me smile that in the
early morning one of us would press the button on our device and the other would reciprocate and our
ToY devices would happily begin pulsating with our assigned patterns letting each other know we were
awake.

Hardware

The hardware which makes up a ToY device is really quite simple and can be built by anyone with a
little soldering experience in an hour or two. The parts required for each ToY unit are shown in Figure
One and the schematic in Figure Two.

The NodeMCU Amica module, shown in Figure Three, is what makes this simple build possible. This
module consists of a ESP8266-12 along with the support circuitry required to make this module an
excellent choice for Internet of Things (IoT) projects and WiFi development.

The ESP8266 is a whole family of WiFi modules which vary in the number of available I/O pins, the
amount of onboard memory, the types of interfaces available and in how the RF antenna is
attached/implemented. The ESP8266 module on the NodeMCU Amica has its RF antenna etched
directly onto the circuit board.

Information on the whole family of ESP8266 devices is available at:
www.esp8266.com/wiki/doku.php?id=esp8266-module-family.

The following attributes of the ESP8266 family were extracted from the data sheet available at:
nurdspace.nl/File:ESP8266_Specifications_English.pdf.

• 802.11 b / g / n
• Wi-Fi Direct (P2P), soft-AP
• Built-in TCP / IP protocol stack
• 802.11b mode + 19.5dBm output power
• Built-in temperature sensor
• Supports antenna diversity
• Off leakage current is less than 10uA
• Built-in low-power 32-bit CPU which can double as an application processor
• SDIO 2.0, SPI, UART , ADC
• Standby power consumption of less than 1.0mW (DTIM3)

In other words, the ESP8266 family of modules features low power consumption, high RF power
output and is capable of supporting all of the current 802.11 standards required for WiFi connectivity.
In addition, it supports many industry standard hardware interfaces and can function as the application
processor in many designs as it does in this one. The ESP8266 is a 3.3 VDC part.

The NodeMCU module comes from the factory programmed with the LUA programming environment

Page 118

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

but since the ToY code was written in the Arduino environment we will overwrite the factory
programming for this application.

The ToY device uses one digital input pin for monitoring the request push button switch and three
digital output pins for driving a common cathode RGB LED. Current limiting for the LED is
implemented using 1K ohm resistors for each of the three colored LEDs which make up the RGB LED.

To read the switch and to drive the RGB LED we must establish a mapping between the general
purpose I/O pins Arduino expects and the physical pins on the NodeMCU module. Figure Four which
shows the NodeMCU pinout helps with this task.

The mapping I have chosen for this design is shown below.

Function Configuration NodeMCU Module Pin Arduino GPIO

Request switch Digital input with pull-up D1 GPIO 5

Red LED drive Digital output for PWM D4 GPIO 2

Green LED drive Digital output for PWM RX GPIO 3

Blue LED drive Digital output for PWM D2 GPIO 4

The ToY software configures these four I/O lines for the functions shown above.

Power for the ToY module is supplied by an USB power supply/charger capable of at least 1 amp @ 5
volts DC. A weak power supply will cause the hardware to operate erratically if at all so make sure the
power supply you use is up to the task.

Configuration

ToY devices must be configured before they will function as a group. For each member of the group
the following information is required.

1. A name to be associated with the ToY group member. This is only used in debugging messages
available through the Serial Monitor.

2. The SSID or network name of the WiFi network the device will be associated with.

3. The password of the WiFi network the device will be associated with.

4. A Teleduino key

5. The selection of a LED lighting pattern for the device.

Each ToY device in a group must have a unique key and a unique LED pattern. Also each device must
exist on a different WiFi network. With the current software, only one ToY device can exist on a WiFi
network.

ToY devices use the Teleduino service I described in my previous article to coordinate their activity.

Page 119

Chapter Eight - Thinking Of You

Each member of a ToY group must be assigned a Teleduino key (a string of 32 hex characters that
uniquely identifies a specific ToY device) which is available for free from:
www.teleduino.org/tools/request-key. If you have five members of your group you will need five keys.

After all of the information about ToY group members is gathered it must be edited into the devices
array within the software. (in the ThinkingOfYou.ino file). An example is shown below:

DEVICE devices[] = {

 "Sister1", "S1_SSID", "S1_PWD", "S1_KEY", redHeartPattern,

 "Sister2", "S2_SSID", "S2_PWD", "S2_KEY", greenBlueSweepPattern,

 "Craig", "MY_SSID", "MY_PWD", "MY_KEY", rainbowPattern,

};

There will be one line of data in this array for each group member.

Once the devices array is filled in, the Thinking of You software must be compiled and uploaded into
each ToY device. The software installed in each member of a ToY group must be identical.

Software

Although the ToY hardware is quite simple the software is anything but. Luckily you don't really need
to know how the software works in detail to be able to use the ToY devices. If you are interested in
learning how the software works read on.

The software was developed using the Arduino IDE. See my previous article for how to set-up the
Arduino IDE on your computer for targeting ESP8266 type devices. Make sure to select “NodeMCU
1.0 (ESP-12E Module)” as the board type in the tools menu.

The Thinking of You software should be available on the Nuts and Volts website in association with
this article. The file is called: Lindley_ThinkingOfYou.zip. To use this software unzip it and move the
ThinkingOfYou directory into your Arduino directory.

The Thinking of You software is made up of the following files:

Filename Purpose

ThinkingOfYou.ino The main program file. This code initializes the ToY device and then runs
a rather complex state machine which: polls the request switch for
activity, queues requests from ToY group members for pattern display
and controls the length of time LED patterns are displayed.

LEDControl.ino Code for controlling the RGB LED using PWM (Pulse Width
Modulation) and code for color creation and conversion.

Patterns.ino Defines the colorful lighting patterns that can be associated with a ToY
group member. Each pattern is written as a state machine. You could

Page 120

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

Filename Purpose

easily add your own patterns once you understand how this software
works.

TeleduinoClient.h The interface specification for the TeleduinoClient class. It defines a class
constructor and four public class methods.

TeleduinoClient.cpp A rather complex state machine that establishes a TCP/IP connection to
the Teleduino server and interprets the data it receives back.

TeleduinoRequest.ino Code for issuing an HTTP GET request to the Teleduino server

Types.h Miscellaneous data type definitions

Once you have the Arduino IDE setup correctly on your computer, have downloaded the code from the
Nuts and Volts website and have edited the devices array with information about your ToY group
members you need to compile the code and upload it to each ToY device in your group. There
shouldn't be any warnings or errors during the compilation and/or upload processes.

When you power up your ToY device you should see the RGB LED change color in sequence from
green to a whitish blue color and then go off. This sequence indicates your ToY device is working
correctly and that it has established a local WiFi connection. If you don't see this LED color sequence
bring up the Arduino Serial Monitor and look for error messages which hopefully will lead you to the
problem and subsequent solution.

Note: there is a small blue LED on the NodeMCU module that indicates the module is powered up. It is
normal for this LED to be on all of the time.

How Things Work

When a ToY device powers up the network name (SSID) and password of each of the groups members
(from the devices array) are passed to the ESP8266 and it in turn tries to connect to each sequentially.
Once the local WiFi connection is established, a persistent connection to the Teleduino server is made
and the local ToY device's key is passed to identify itself. The Teleduino server first verifies the key is
valid and then begins a message exchange with the ToY device to verify it is up and running. This
exchange, managed by the TeleduinoClient code, repeats approximately every 5 seconds to verify the
ToY device is still alive and well. This process will continue as long as the ToY device is powered up.

An HTTP GET request targeting each group member is sent to the Teleduino server when any one of
the ToY group members presses its button. Passed in this request is the index into the devices array of
the device making the request.

The TeleduinoClient code in each group member will then receive an event from the Teleduino server
which indicates which ToY device made the request. A lookup in the devices array then retrieves the
function pointer for the LED lighting pattern corresponding to the ToY device that made the request
and this pointer is added to the LED pattern display stack. Code running in the background sees that the
display stack is no longer empty and starts the LED lighting pattern on each ToY device.

Page 121

Chapter Eight - Thinking Of You

If and when a group member responds its display pattern is appended to the display stack and the
patterns display sequentially.

A background function monitors how long the patterns have been displayed and after 30 minutes of no
switch activity clears the display stack and turns off the RGB LED.

Packaging the ToY Device

I wanted the ToY devices to be as small as I could easily make them and as unobtrusive looking as
possible. I definitely didn't want them to look like a bunch of wires and parts kludged together because
they will need to be placed in a conspicuous place to be seen and interacted with.

Fortunately I had just visited a Container store and remembered these cool little, vividly colored,
plastic boxes I thought would work perfectly. They come in all sizes but I picked one with dimensions
of 1 5/8” x 1 5/8” x 2 7/8” which would easily fit the NodeMCU module with room to spare. I decided
to buy two of these boxes for each device: a clear one and a colored one. I would use the top of the
clear box and the bottom of the colored box together. This would allow the light from the RGB LED to
radiate from the top of the box but would help hide the electronics within the bottom.

With that decided I used steel wool to frost the clear top to diffuse the LED's light. I then drilled a hole
in the middle of the top for the miniature push button switch. I used a small file to create a square hole
for the switch and then used a couple of drops of super glue to hold the switch in place.

I then cut the small connector off the end of a USB cable as I needed to feed the cable through a hole in
the bottom portion of the box. I also decided the electronics was still to visible so I cut four pieces of
black frame matting to fit the inside of the bottom of the box. This not only hides the electronics but
formed a support for mounting the NodeMCU module as well.

Figure Five shows two units being prepped for assembly. Here you can see the frosted tops with
attached switches, the USB cables fed through the sides of the colored boxes, the pieces of frame
matting and how each NodeMCU module was attached to a piece of the matting with drops of super
glue in each corner.

All of the electronic components are soldered directly to the NodeMCU module except for the switch
which is wired to the module. This can be seen in Figure Six. I made the resistor and LED wires as
short as possible to make them mechanically rigid. I made sure the LED was placed off to the side of
the USB connector on the NodeMCU module so my modified USB cable could be easily attached.

As mentioned, I had to cut the end off of the USB cable so that it could pass through a small hole in the
side of the plastic box. It would be possible to strip the wires from both ends of the cable and reattach
the micro USB connector to the cable but I decided to use a new connector instead. This would allow
the cable/connector to have a lower profile so it wouldn't extend up into the clear plastic box top.

With the cable completed, I attached the cable to the NodeMCU unit and slid it into the colored box

Page 122

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

bottom. I then inserted the other three pieces of matting material and held them in place while I put a
drop of super glue in the corners to hold them together. Placing the clear plastic box top onto the
bottom completed the construction.

Conclusions

Keeping in touch with family and friends is very important in the hectic world we live in. That,
however, is not the only use for a ToY device. It could be used, for example, to alert your friends
across town that it is time for beer o'clock or be used to monitor your children's continued presences at
some else's house or to inform your morning car pool members you are on your way and who knows
what else. I am sure many uses for these devices will present themselves if you give it some thought.

For me, I think this will make a nice Christmas present for myself and my sisters. Then, with a touch of
a button we can let each other know that we are thinking of them.

I would like to thank my friends Dave and Barbara Resch for helping me test the Thinking of You
concept and the actual devices.

Resources

Information about Teleduino is available at: www.teleduino.org

Information about programming the ESP8266 in the Arduino environment can be found at:
github.com/esp8266/Arduino.

Information about the NodeMCU Amica can be found at: www.electrodragon.com/product/nodemcu-
lua-amica-r2-esp8266-wifi-board/.

Page 123

Chapter Eight - Thinking Of You

Figure One

Thinking of You Device Parts List

(per unit)

Quantity Description Source

1 NodeMCU Amica R2 Module electrodragon.com

1 RGB LED

common cathode

amazon.com

3 1 K ohm ¼ watt resistor anywhere

1 USB power adapter/charger

1 amp @ 5 VDC minimum

ebay.com

1 Micro USB Cable - A to Right
Angle Micro B

amazon.com

1 Micro USB Type A Male 5 Pin
connector

(optional)

amazon.com

1 PCB Momentary Tactile

Push button switch

amazon.com

1 Amac Box Clear

#60300

you can also buy two boxes: one
colored and one clear and put the

clear top on the colored body

containerstore.com

Frame matt material Hobby Lobby/Michaels

Super Glue Hobby Lobby/Michaels

Hookup wire anywhere

Page 124

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

Page 125

Chapter Eight - Thinking Of You

Figure Two
Thinking of You Device Schematic

Page 126

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

Figure Three
The $10 NodeMCU Amica R2 Module

containing the ESP8266-12

Page 127

Chapter Eight - Thinking Of You

Figure Four
NodeMCU Amica Module

Pinout

Page 128

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

Figure Five
Preparation for Construction

Page 129

Chapter Eight - Thinking Of You

Figure Six
Assembly Complete

Note: the NodeMCU module is super glued to the frame matt material

Page 130

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

Figure Seven
ToY device is smaller than a coffee cup

Page 131

Chapter Eight - Thinking Of You

Figure Eight
My Family's Group of Three

Thinking of You Devices

Page 132

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

Chapter Nine - WiFi Robot and Robot Controller

Introduction

Let me state up front that I know next to nothing about robots or the current state of personal robot
technology. Most of the projects I design and build have to do with making LEDs blink colorfully or
making music on computers. Many of my recent projects have been based upon the ESP8266 micro
controller / wifi module because of its capabilities and its inexpensive price. Specifically, my recent
projects have all used the NodeMCU Amica device shown in Figure One, which contains a ESP8266-
12 module. Why do I like this module, let me count the ways:

1. It contains a 32 bit micro controller which can be programmed in the Arduino environment
allowing anyone with Arduino experience to utilize this device.

2. The micro controller can run at 160 MHz which gives it a lot of power for complex tasks.
3. The micro controller has ~80K of RAM and ~1 MByte of flash for program storage along with

some EEPROM as well.
4. It has industry standard i2c and SPI interfaces and 13 general purpose I/O pins most of which

support PWM. Figure Two shows the pinout of the NodeMCU Amica module.
5. The module has a built in WiFi interface which supports the 802.11 b / g / n networking

standards. This allows the module to talk directly to a home or business WiFi network along
with the ability to function as a stand alone wireless network.

6. The ESP8266 has a large and growing user base so there is a lot of information and projects on
the Internet and many knowledgable people who can help if you have problems putting these
devices to work.

7. Last, but not least, the NodeMCU Amica module is available for $6.40 each at
electrodragon.com.

Why anyone would still be using a genuine Arduino or many of the other micro controller boards
currently on the market is beyond me.

NOTE: See http://esp8266.github.io/Arduino/versions/2.0.0/doc/installing.html for instructions on how
to install the ESP8266 development software on your computer. Make sure you select NodeMCU 1.0
as your board type and 160 MHz as the CPU frequency if you try to reproduce my results.

In a conversation the other day with Bryan Bergeron he suggested I might apply my knowledge and
fondness for the ESP8266 to robotic applications and that got me thinking. I had never built an
electronics project that actually moved so this might be a good opportunity to do so. Could a
NodeMCU Amica module be the brains of a robot? I decided to find out.

Of course since this would be my first robotics project I needed to keep things simple. I viewed this
challenge more as a testbed for the technology than an attempt to build a full featured robot. However
after getting my robot to work I realized how extendable the robotics platform I will describe in this
article was. It could be used as the basis for any number of robot designs much more powerful than
what I present here.

Page 133

Chapter Nine - WiFi Robot and Robot Controller

In a nutshell this is what I have done. On the robot front I have coupled the NodeMCU Amica module
to a L293D H-bridge motor controller chip connected to an inexpensive two motor robot chassis from
makershed.com.

On the robot controller side I have coupled the NodeMCU Amica module to a joystick and an RGB
LED. Using the joystick you can wirelessly drive the robot around but at the present time, that is all
you can do. The LED provides a visual indication of the status of the wireless communication link
between the robot and the robot controller. Limiting as this is, it does prove the NodeMCU Amica
module can be the brains of both a robot and its accompanying controller.

Both the robot and the robot controller's electronics are built using point to point wiring on perf board.
Figure Three shows the results of my effort.

The Robot Controller

The robot controller can be seen in Figure Four. The robot controller controls the robot via its joystick.
While the controller could have been powered with batteries I chose to power it via USB as this was
only a prototype. As mentioned the RGB LED displays the controller's status. If the LED blinks red it
means the controller could not connect to the robot. If it blinks blue, it means that the link up
handshake carried on between the robot and the controller has gotten out of sync. If the LED glows
green, the controller and the wireless network are operational.

The position of the joystick controls the speed of the robot's motors. Whenever the joystick is in the
center or released position, the robot comes to a stop. The forward position of the joystick is towards
the NodeMCU module on the circuit board. Joystick positions above center drives the robot forward
while positions behind center drive it backward. If the joystick is moved left of center the robot's left
motor is slowed down so the robot turns towards the left. Conversely, if the joystick is moved to the
right of center, the right motor slows down making the robot veer to the right. The speed of the robot is
controlled by how far the joystick is pushed in any direction. With a little practice the robot can be
driven smoothly and is responsive enough to be driven around obstacles.

Text tokens are passed wirelessly between the robot controller and the robot to control its operation.
The controller sends out a ping token about once a second that the robot should receive and echo back
to confirm link status. The controller expects to receive these ping messages and will go into an error
state if they are not received. The ping token is just the string “ping” followed by carriage return (ascii
code 13) and line feed (ascii code 10) characters.

Robot motor speed is controlled by two other text tokens “lm:speed” and “rm:speed” passed from the
robot controller to the robot. “lm” stands for left motor while “rm” stands for the right motor. Speed is
a signed entity that sets the corresponding motor's speed. Speed ranges from zero or stopped through
1023 which corresponds to the maximum speed of the motor. Currently the robot controller software
limits maximum motor speed to make driving slower but easier. If speed is positive the motor runs
forward; if negative the motor runs backward.

Page 134

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

Hardware

The Robot Controller consists of the following parts.

Item Description Source

NodeMCU Amica Module Micro controller with WiFi
interface

electrodragon.com

CD4066B CMOS quad bilateral switch ebay.com, digikey.com, etc.

RGB LED Common cathode type “

3 resistors 1K ohm ¼ watt, 5% “

Thumb Joystick COM-09032 sparkfun.com

Misc Wire, perf board, 14 pin IC
socket, solder

Junk box

The Fritzing diagram in Figure Five shows how simple the robot controller's circuit is while Figure Six
shows the actual schematic.

While the NodeMCU Amica module is the central component in the robot controller's design it is the
interface to the joystick that is the interesting part of the circuit. For those who haven't used a joystick
before, the particular joystick used in this design is comprised of two potentiometers and a switch. As
the joystick is moved left and right the horizontal potentiometer changes value. As the joystick is
moved forward and backward the vertical potentiometer changes values. The joystick's switch closes if
the joystick is depressed and opens when the joystick is subsequently released.

In this design the potentiometers are wired between the 3.3 VDC supply (from the NodeMCU device)
and ground so the arm of the potentiometer varies between these two values as the joystick is moved.
The analog to digital converter (ADC) in the NodeMCU is a 10 bit converter so input voltages in the
range 0.0 to 3.3 VDC result in converted values between 0 and 1023.

The problem was the joystick supplies two analog signals while the NodeMCU device has only a single
ADC input, A0. I got around this problem by using two sections of an CD4066 CMOS quad bilateral
switch. Each of the four analog switches in these devices are controlled by a separate control signal.
When the control signal is high, a low resistance path is established between the input and output of the
switch i.e. the switch is on. When the control signal is low, the switch turn off. These analog switches
are called bilateral because signals can flow in either direction. For example switch section A has two
signal connections: A in/out and A out/in and either one can be the input or the output.

I got around the single ADC input issue by turning analog switch A on when reading the horizontal
joystick signal and turning it off and analog switch B on when reading the vertical joystick signal,
effectively giving the ADC two inputs. Software in the NodeMCU device switches the analog switch
control signals back and forth while the joystick's position is being read.
Currently the joystick's switch is not being used but it is wired to a GPIO line on the NodeMCU device

Page 135

Chapter Nine - WiFi Robot and Robot Controller

in case the software ever wants to make use of it.

Software

While the hardware for the robot controller is relatively simple, the software to make it all work is
somewhat complex because there is a lot going on. The software has to establish and maintain the
wireless connection between itself and the robot, it has to continually read the position of the joystick
and pass motor control tokens over the link and it has to monitor link synchronization between the
robot and itself.

While all this activity calls out for some sort of multi-tasking to handle these multiple disparate tasks
we don't have that luxury on the NodeMCU. Instead I employed a Finite State Machine (FSM) to
manage things. Technically a FSM is:

“A model of a computational system, consisting of a set of states, a set of possible inputs, and a rule to
map each state to another state, or to itself, for any of the possible inputs”.

Sounds daunting but don't let the definition scare you, the operation is really quite simple.

The operation of the robot controller can best be understood by examining the code in the file
RobotController.ino which is available on the website.

The user configuration items are first up. These are the networking parameters which must match that
of the robot or the communication between the robot and robot controller won't be possible. The robot
creates its own network called an access point (AP) and these parameters make sure the robot controller
is talking to the robot's AP IP address at port 8000. MAX_SPEED defines the maximum speed of the
robot's motors. When set at 900 this slows the robot down to make navigation easier. Setting this to
1023 would make the robot's motors run at full speed.

Next up are the hardware configuration items which makes the software aware of which I/O lines are
connected to which peripherals. Following this, are utility functions used throughout the software. The
setup() function which follows configures the hardware and attempts to logon to the robot's network. If
logon fails the RGB LED blinks red to let the user know there is a network problem. If the connection
is successful, the LED turns green, the initial state of the state machine is set and the setup function
ends.

The loop() function contains the FSM which orchestrates everything. The FSM is just a switch
statement which is controlled by the state variable. The current FSM state is evaluated every time
through the loop.

The FSM is made up of the following states:

State Operation

STATE_INIT Initializes important FSM variables then transitions to the

Page 136

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

STATE_CHECK_CONNECTION state the next time through the loop.

STATE_CHECK_CONNECTION Check the status of the network connection between the robot and
controller. If the connection is up transitions to the
STATE_CHECK_PINGS state. If the connection isn't up a transition is
made to the STATE_MAKE_CONNECTION state.

STATE_MAKE_CONNECTION In this state an attempt is made to contact the robot at its IP address and
port. If successful the RGB LED is set to green and a transition is made
to the STATE_CHECK_PINGS state. If the robot cannot be contacted, a
transition is made to the STATE_ERROR state which causes the LED to
blink red.

 STATE_CHECK_PINGS Two things happen in this state. First, a determination is made as to
whether a ping synchronization message should be sent to the robot. If
the ping timeout has expired, a ping message is send and the timeout is
reset. Second, a check is made to make sure the controller has received
the echoed ping message from the robot in the allotted time interval. If
everything is fine a transition is made to the STATE_CHECK_INCOMING
state. If the controller hasn't received a ping message in the allotted
time a transition is again made to STATE_ERROR but this time the LED
will flash blue.

STATE_CHECK_INCOMING In this state the controller listens for input from the robot. At the present
time the only input of interest from the robot is the echoed ping
message. If this is received, the received ping timeout is reset and a
transition is made to the STATE_PROCESS_JOYSTICK state.

STATE_PROCESS_JOYSTICK In this state the joystick's position is read and manipulated into the left
and right motor messages previously discussed. New messages will
only be sent to the robot when the joystick's position changes. At the
end of this process a transition is made back to the
STATE_CHECK_CONNECTION state and the FSM process starts over.

STATE_ERROR This state is entered when there is a problem with the network
connection or when the link goes out of sync. The RGB LED blinks
with a color indicative of the error and then resets the state to
STATE_INIT causing the software to re-start in an attempt to correct the
error.

Page 137

Chapter Nine - WiFi Robot and Robot Controller

The Robot

Hardware

The Robot is made up of the following parts.

Item Description Source

ModeMCU Amica Module Micro controller and WiFi
interface

electrodragon.com

L293D Motor controller chip ebay.com, digikey.com, many
others

4 - 100uF capacitors Filter capacitors - 50 VDC or
greater

Radioshack

8 – 0.1 uF capacitors Noise reducing capacitors Radioshack

Adjustable voltage regulator Step down shunt regulator ebay.com

Robot Platform Including chassis, rear caster,
two DC motors with wheels,

battery box for 5 AA batteries,
power switch, power connector
and misc assembly hardware.

makershed.com or many other
places

Misc Wire, perf board, 16 pin IC
socket, power connectors, solder,

tin for shield, etc.

Junk box

Figure Seven shows a closeup of the robot's electronics and Figure Eight shows its schematic.

Two items of note. First, you'll notice that an SD memory card is visible on the robot's circuit board.
This is not used in the basic robot configuration I present in this article but was included to enable
future enhancements.

Second, under the perf board on which the robot's electronics were built is a metal shield made out of
tin but insulated from the point to point wiring with a piece of cardboard. Initially I had trouble with the
NodeMCU rebooting when the motors were turned on and this shield along with the addition of
numerous noise filtering capacitors around the motor controller chip cured the problem.

Many of you are probably familiar with the L293D H-bridge motor controller chip used in this design.
This chip is used to control the two low current DC motors powering the robot directed by logic signals
from the NodeMCU module. In a typical L293D design, a set of inputs, 1A and 2A for one motor and
3A and 4A for the other motor are use to control direction while the enable pins are fed a PWM signal
to control motor speed. This arrangement requires six digital lines from the micro controller which I
didn't have available (because of the SD memory card interface). So instead I used only two input per

Page 138

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

motor and some clever software to control both direction and speed. The following truth table
describes how the motors react to their input signals.

 1A/3A 2A/4A Action

 0 0 stop
 1 1 stop
 0 1 forward
 1 0 reverse

The stall current for these motors was spec'ed at ~600 mA, well within the drive capabilities of the
L293D chip.

The robot platform I purchased came with a battery box for five AA batteries. The 7.5 VDC provided
by the batteries was fine for driving the motors but needed to be reduced to 5 VDC to power the
NodeMCU module and the L293D chip. This was done using a adjustable step down buck regulator
that I purchased on eBay for around $1.00. After wiring the battery box to the power switch and the
regulator I adjusted the output voltage to 5 volts.

Software

The software in the robot is very simple and leaves lots of room for future enhancements. The code is
available in the file Robot.ino also available on the website. One interesting thing about the software is
that it configures the NodeMCU module to create a WiFi access point or AP. In essence the robot
creates its own wireless network that the robot controller connects to without the need to use your
home WiFi network. This means the robot can be used outside and has a range of about 30 feet.

The other interesting thing about the software is how the motors speed and direction are controlled.
This is accomplished with the code below:

// Motor control function
void setMotor(int motorID, int dir, int speed) {
 if (motorID == LEFT_MOTOR) {
 if (dir == FORWARD) {
 // We are going forward
 digitalWrite(LM_DIR_PIN, 0);
 analogWrite(LM_SPEED_PIN, speed);
 } else {
 // We are going backward
 digitalWrite(LM_DIR_PIN, 1);
 analogWrite(LM_SPEED_PIN, 1023 - speed);
 }
 } else {
 if (dir == FORWARD) {
 // We are going forward
 digitalWrite(RM_DIR_PIN, 0);
 analogWrite(RM_SPEED_PIN, speed);
 } else {
 // We are going backward
 digitalWrite(RM_DIR_PIN, 1);
 analogWrite(RM_SPEED_PIN, 1023 - speed);
 }
 }

Page 139

Chapter Nine - WiFi Robot and Robot Controller

 delay(25);
}

The setMotor function is passed an identifier for the motor (LEFT_MOTOR or RIGHT_MOTOR), the
direction the motor should move in (FORWARD or BACKWARD) and a speed value in the range 0 ..
1023. To go forward the odd control pin on the L293D is set low and a PWM signal is applied to the
even control pin. To go in reverse, the odd control pin is set high and a PWM signal is again applied to
the even pin but this time the PWM duty cycle must be inverted by subtracting the desired speed from
1023. If you draw out the PWM signals you'll see why this is necessary.

The setup() function in the code sets all of the motor control pins to outputs and sets them low to
initially stop the motors. Next, access point networking is setup and the server to which the robot
controller communicates is brought up.

It is within the loop() function where all the action is. Here the code waits for a connection from the
robot controller and when established, processes the messages it receives. If a ping is received it is
immediately echoed back to the robot controller to verify link integrity. As motor control messages are
received they are parsed and the results are sent directly to the motors via the setMotor function
described above.

Conclusions

The availability of inexpensive NodeMCU Amica modules with their embedded WiFi and 32 bit micro
controller makes this form of robotic remote control possible. The basic robot and robot controller
described in this article just scratch the surface of what could be done in real robot applications. The
micro controller's on both the robot and the robot controller have many more processor cycles available
which could be put to use for object avoidance, line following, laser pointing or you name it. If you do
something interesting with what I have presented here, let me know.

Page 140

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

Figure One
The NodeMCU Amica Module

Page 141

Chapter Nine - WiFi Robot and Robot Controller

Figure Two
NodeMCU Amica Pinout Diagram

Page 142

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

Figure Three
Robot and Robot Controller

The little module on the back of the robot is the adjustable voltage regulator

Page 143

Chapter Nine - WiFi Robot and Robot Controller

Figure Four
Robot Controller Closeup

Page 144

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

Figure Five
Robot Controller Fritzing diagram shows how simple the circuit is

Page 145

Chapter Nine - WiFi Robot and Robot Controller

Figure Six
Robot Controller Schematic

Page 146

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

Figure Seven
Robot Electronics Closeup

Note: the SD memory card is not used in this basic robot application

Page 147

Chapter Nine - WiFi Robot and Robot Controller

Figure Eight
Robot Schematic

Page 148

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

Figure Nine
Robot Thru View

Page 149

Chapter Nine - WiFi Robot and Robot Controller

Page 150

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

Chapter Ten – NeoPixel LED NTP Clock

Introduction

Did the the world really need yet another digital clock running on a micro controller? I didn't think so
until daylight savings time changed again and I had to go around my house and change the time on
many of my clocks. Not only that, one of the batteries in a clock had died so I had to replace the battery
and then set the time and date again. In another of my clocks the quartz movement seems to gain time
slowly so I never really know the time accurately. I started thinking about what a pain this all was so I
decided to build a clock that:

Is extremely simple to build

Requires no switches for setting time and / or date

Didn't need a backup battery or batteries of any kind

Was always accurate

Dealt with daylight savings time automatically by itself

In other words I wanted to build a clock that needed zero maintenance on my part and that would
always display the time and date correctly. I decided to base my clock on the Network Time Protocol
(NTP) that all modern personal computers/devices use to synchronize their time keeping activities. The
time reported by NTP servers can be traced back to atomic clocks at the National Bureau of Standards
or NIST so it is very accurate all of the time. Of course this meant my clock would have to have access
to the Internet to request NTP time and that is where the amazing NodeMCU Amica module with a
built in ESP8266 processor came in. Not only does this module feature a WiFi interface, it also
contains a 32 micro controller which would be the perfect engine for this application. And did I
mention it is cheap? around $4.50 US in single unit quantities. Most realtime clock modules made for
the Arduino cost more than this by themselves.

The hardware / software combination I present here implements a digital clock that never needs setting
as it gets the current time and date by polling Network Time Protocol (NTP) servers on the Internet.
The clock's time is synchronized to NTP time every 5 minutes to maintain its accuracy. Use of a
Timezone library means that Daylight Savings Time (DST) is automatically taken into consideration so
no time change buttons are necessary. This clock always runs in 12 hour mode.

Clock Operation

Once the clock has been assembled and the code downloaded into it, after a short pause the time will be
displayed on the NeoPixels. The background color of the clock is a cyan. Hours are displayed on the
small 12 NeoPixel ring using a red pixel for the current hour. Minutes and seconds are displayed on the
large 24 pixel ring; minutes in green and seconds in gold. The eight LED strip across the bottom
sweeps back and forth every second. The red, green and gold time indicating pixels move as the time
changes.

Page 151

Chapter Ten – NeoPixel LED NTP Clock

To make the clock a bit more fun I created events that occur on 30 minute, 15 minute and 10 minute
intervals. During the 30 minute interval, time display is suspended and the components of the current
date are displayed sequentially on the large NeoPixel ring. First comes the day of the week display with
Sunday being day one. Next the month is displayed with January being the first month, followed by the
day and finally the year. After the date is displayed, time display resumes until the next event.

The 15 minute event flashes red, green and blue colors sequentially on the large ring, small ring and
NeoPixel strip. This is a colorful diversion from the mundane display of time.

10 minute events occur most often. The 10 minute event causes the NeoPixel LEDs to display a
rotating rainbow of colors that will brighten any room.

Hardware

The hardware for this clock is very simple and consists of the following parts:

Part Source

NodeMCU Amica R2 Module electrodragon.com

100 ohm ¼ watt 5% resistor RadioShack

12 LED NeoPixel Ring adafruit.com

24 LED NeoPixel Ring adafruit.com

8 LED NeoPixel Strip adafruit.com

USB cable
Micro USB Cable – type A to Micro B

amazon.com. ebay.com, RadioShack

USB Power Supply / Charger Module
5 volts @ at least 1.5 amp

amazon.com, ebay.com

Small picture frame, frame matting material and
some super glue

JoAnns, Michaels, Hobby Lobby

The schematic of this clock is shown in Figure One. The NodeMCU Amica module which powers this
clock is shown in Figure Two.

This clock is made up of three NeoPixel LED devices (two rings and a strip) which are Adafruit parts.
They are mounted on a piece of frame mat material with a couple of drops of super glue. See Figure
Three. Connections to these devices are via wires that run thru the back of the mat material.

The larger ring has 24 NeoPixels, the smaller has 12 and the strip has 8.

Page 152

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

NeoPixels are individually addressable RGB LEDs with built in PWM and serial data controllers.

Figure Four shows the back of the clock's mat. You can see there isn't much to the clock circuit. The
Node MCU module was super glued to the mat so it would remain in place while it was connected. As
you can clearly see here only three wires connecting the NodeMCU to the NeoPixel devices. A 100
ohm resistor is placed between the NodeMCU Amica RX output and the input to the large NeoPixel
ring to reduce noise on the connection. The output of the large ring connects to the input of the small
ring. The output of the small ring drives the input to the NeoPixel strip. The +5V Vin and Gnd
connections from the Amica are wired to all three NeoPixel devices.

The clock is powered externally via the USB cable shown and a USB power module of at least 1.5 amp
output current which is not shown.

Software

The software is built using the following tools:

Software Source

Arduino IDE
Version 1.6.8 or newer

www.arduino.cc/en/Main/Software

ESP8266-Arduino library
Version 2.2.0 or newer

github.com/esp8266/Arduino

NeoPixelBus library in DMA mode github.com/Makuna/NeoPixelBus

Time library github.com/PaulStoffregen/Time

Timezone library github.com/JChristensen/Timezone

NOTE: the libraries I built this code with are included in the code directory accompanying this
document.

See http://esp8266.github.io/Arduino/versions/2.2.0/doc/installing.html for instructions on how to
install the ESP8266-Arduino software required to build the code within the Arduino IDE environment.

To use this software you must first configure it for your location. At the top of the file,
ESP8266_NeoPixelLEDClock.ino, you will find the user configuration section shown below:

// ***
// Start of user configuration items
// ***

// Set your WiFi login credentials
#define WIFI_SSID "????????"
#define WIFI_PASS "????????????"

Page 153

Chapter Ten – NeoPixel LED NTP Clock

// This clock is in the Mountain Time Zone
// Change this for your timezone
#define DST_TIMEZONE_OFFSET -6 // Day Light Saving Time offset (-6 is mountain time)
#define ST_TIMEZONE_OFFSET -7 // Standard Time offset (-7 is mountain time)

You must first set the WIFI_SSID and WIFI_PASS to match your local wireless network. The
ESP8266 uses this to login to your WiFi network and request the time once every five minutes from
NTP servers on the net. The final item of configuration is the specification of your location's time zone
offset (in hours) from Coordinated Universal Time (UTC). As shown above I live in the mountain time
zone that has a seven hour time difference during non daylight saving time (DST) and six hours when
DST is in use. See en.wikipedia.org/wiki/List_of_tz_database_time_zones for a list of timezones
around the world.

Make sure you select the NodeMCU 1.0 as your board type in the Arduino IDE before you compile or
you will receive plenty of error messages. Once you have modified and saved the file, compile and
upload it to the NodeMCU module via a USB cable. If time is not displayed quickly bring up the
Arduino Serial monitor and hopefully you will be able to tell what the problem is. If time is displayed,
you should be good to go.

If power to your clock is ever lost the clock will set in the new time and date when power is restored
and the clock boots up and connects to the Internet. If your WiFi network or modem goes down it may
not come back up as fast as your clock but never fear the connection Finite State Machine (FSM) in the
code will retry continually until normal clock operation is restored. You never have to set the clock's
time or whether or not DST is in effect.

I would like to acknowledge Becky Stern, previously at Adafruit, for giving me the idea of using
NeoPixels LED rings to display time.

Conclusions

The finished and operational clock is shown in Figures Five. Mounting the NeoPixel / mat assembly in
a small metal frame makes a nice looking DIY desktop clock. This clock has been running at my house
for about a year and a half without issue. The pictures of the clock shown in this article are not that
great because the NeoPixel LEDs are so bright and the colors so saturated it messes with my camera.
Actually the code intentionally reduces the brightness of the NeoPixel LEDs otherwise this clock
would be blindingly bright. In person, the colors are just beautiful and pure.

Figure Six shows the clock during a 10 minute event. Every 10 minutes the display of time ceases and
the NeoPixels display a rainbow of colors that move across all of the LEDs. Time display returns to
normal after completion of the event.

There is also a 15 minute event which flashes colors across all of the NeoPixel LEDs.

The 30 minute event displays the current date using the large ring with each component of the date
displayed in a different color. First up, the day of the week is displayed on the LEDs with Sunday being
the first day. Next the month is displayed with January being month one, followed by the day of the

Page 154

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

month (1..31) and the year minus 2000. This year the year display shows a count of 17. It takes a little
practice to read the date from the LEDs but once you are used to it, reading the date is easy.

Page 155

Chapter Ten – NeoPixel LED NTP Clock

Figure One
NeoPixel LED Clock Schematic

Page 156

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

Figure Two
The NodeMCU Amica ESP8266 Module

Page 157

Chapter Ten – NeoPixel LED NTP Clock

Figure Three
Clock Face with NeoPixel Devices

Page 158

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

Figure Four
Rear View of Clock

As you can see there is not much to it.

Page 159

Chapter Ten – NeoPixel LED NTP Clock

Page 160

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

Figure Five
Clock in operation displaying the time

Page 161

Chapter Ten – NeoPixel LED NTP Clock

Figure Six
Clock displaying the 10 minute event

Page 162

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

Snippet #1 ESP8266 & VS1053B Internet Radio

Introduction

Since the ESP8266 has a WiFi interface built in I wondered whether it might be used for an Internet
radio application. I didn't think there would be enough memory / performance to have a software based
MP3 decoder for decoding the radio stations and have anything left over for additional functionality so
I decided to couple it to a VS1053B module instead. The manufacture of the VS1053B chip refers to it
as a Ogg Vorbis/MP3/AAC/WMA/FLAC/MIDI audio codec circuit.

I had seen these modules around for years but never has a reason to buy one and play with it until now.
So I looked around on eBay and found one shipped to my door for $13.00 US. There are many varieties
of these module around and probably any of them would work for this application. The module I
bought is shown in Figure One.

In reading the data sheet for the VS1053B I came to an appreciation for all of the functionality built in
to this tiny chip. The Internet Radio application discussed here barely scratches the surface of what this
chip is capable of. In fact the module I bought has a built in condenser microphone and line inputs for
recording audio as well as for audio playback but I have not experimented with that yet. Another
surprise was the presents of MIDI capability. This chip contains a midi interface and all of the GM1
and GM2 voices. The MIDI capabilities of this module will be explored in the Snippet #2 later in this
document.

So this experimental Internet Radio consists of a NodeMCU Amica module coupled to the VS1053B
module with a pushbutton switch for changing the radio station selection. Things don't get much
simpler than this.

Hardware

I used a proto board for wiring up the Internet Radio. The operational radio is shown in Figure Two.
Jumper wires were used for all connections. The table below shows all of the pertinent connections.

NodeMCU
Amica

VS1053B
Module

Station
Advance

PB Switch

Function

D1 DREQ VS1053B data ready

D2 RST VS1053B reset pin

D3 PB1 Station advance pushbutton pin

D4 xDCS VS1053B data chip select

D5 SCK SPI clock

Page 163

Snippet #1 ESP8266 & VS1053B Internet Radio

NodeMCU
Amica

VS1053B
Module

Station
Advance

PB Switch

Function

D6 MISO SPI data interface

D7 MOSI SPI data interface

D8 xCS VS1053B command chip select

Gnd Gnd PB2 Ground connection

Vin 5V Power connection

The circuit is powered via the USB connection to my computer. I used headphones for listening to the
radio stations but a power amplifier could be connected instead if you want to drive speakers. The
fidelity is remarkably good when listening to stations that have bit rates of 128 Kbps or greater.

Software

The software for the Internet Radio is comprised of three files as described below:

File Function

ESP8266_VS1053_InternetRadio.ino This code creates instances of and initializes the circular
buffer, the VS1053 driver and a WiFi client that are needed
for the Internet Radio. It also handle connection to the local
WiFi network. The radio stations used for testing are also
defined here.

CircularBuffer.h This file implements a circular buffer which buffers the data
received from the network and sends it to the VS1053 chip in
the 32 byte chunks it requires.

VS1053.h This is the driver for the VS1053B chip. It manages the low
lever SPI interface for interfacing to the chip. There are
routines for reading and writing the chip's registers, for
verifying a VS1053 is connected to the NodeMCU module,
for starting and ending playback, for transferring audio data to
the chip and for controlling the playback volume.

For testing purposes I have created the following definitions in ESP8266_VS1053_InternetRadio.ino.

// Station Descriptor

typedef struct {

 const char *host;

Page 164

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

 int port;

 const char *request;

} STATION;

// Define some test stations of various bit rates

STATION stations [] = {

 // Beatles radio 128 Kbps

 "64.40.99.2", 8000, "/",

 // Classic rock Florida 160 Kbps

 "us2.internet-radio.com", 8046, "/",

 // Smooth Jazz Planet 192 Kbps

 "airspectrum-ir.cdnstream.com", 8000, "/1258_192",

 // Venice Classic Radio Italia 128 Kbps

 "174.36.206.197", 8000, "/",

 // Nashville FM [24/7 Nonstop Country Music] 192 Kbps

 "46.231.87.20", 8300, "/",

};

#define NUMBER_OF_STATIONS (sizeof(stations) / sizeof(STATION))

Three items of information are required to access an Internet Radio station and these are grouped
together in the STATION descriptor datatype shown in the code above. The items are a domain name or
IP address of the radio station's host server, the port number on the server for the connection and a
request string used to form the HTTP GET request which starts the streaming of the audio data.

In the code I created an array of STATION called stations which describes five radio stations of
different bit rates and different genres. Stations include one dedicated to Beatles music, a classic rock
station, a smooth jazz station, a classical music station and a country station. Something for everyone.

The selectStation function manages the connection to an Internet Radio station.

void selectStation(void) {

 // Lower volume during change of station

Page 165

Snippet #1 ESP8266 & VS1053B Internet Radio

 vs1053.setVolume(0);

 // Stop playback

 vs1053.stopPlayback();

 if (client.connected()) {

 // Disconnect from current connection

 client.stop();

 }

 // Clear the circular buffer

 cb.clearBuffer();

 // Get parameters of station to play

 STATION station = stations[stationIndex];

 // Attempt connection to selected host station

 if (! client.connect(station.host, station.port)) {

 while (true) {

 Serial.println("Connection failed");

 delay(1000);

 }

 }

 Serial.printf("Connection succeeded to Internet radio station: %s\n", station.host);

 // Send the GET request to the host

 client.print(String("GET ") + station.request + " HTTP/1.1\r\n\r\n");

 // Start playback

 vs1053.startPlayback();

 // Raise volume

 vs1053.setVolume(DEFAULT_VOLUME);

}

This function is called in the program's loop() function whenever the station advance pushbutton switch
is clicked. The loop() functions also reads data from the network and stores it into the circular buffer

Page 166

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

and then doles out the data from the circular buffer to the VS1053B in VS1053_CHUNK_SIZE (32
byte) chunks.

The stationIndex variable is incremented every time the station advance pushbutton is clicked. A check
is made to make sure it stays in the range 0 .. 4 so it doesn't overrun the stations array.

Conclusions

The components used in this Internet Radio are relatively inexpensive so why not try and build yourself
an Internet Radio. The website internet-radio.com is a great source of radio station data. To discover
the required station parameters (host, port and request) select a station and then click the .pls link to
bring up the station's information. For example I chose the Classic rock Florida station. Clicking the
.pls link yields the following:

[playlist]

NumberOfEntries=1

File1=http://us2.internet-radio.com:8046/

The host server is then: us2.internet-radio.com

The host post is: 8046

The request string is: /

Use this technique to add to or modify the stations I have coded into the software.

As always, have fun experimenting with your Internet Radio.

Page 167

http://us2.internet-radio.com:8046/

Snippet #1 ESP8266 & VS1053B Internet Radio

Figure One

The VS1053B Module

One of many varieties that should work.

Page 168

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

Figure Two

The working breadboard of the Internet Radio

The pushbutton on the right is the station advance switch

Page 169

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

Snippet #2 ESP8266 & VS1053B MIDI

Introduction

As mentioned in Snippet #1, the VS1053B device is really quite a marvel in terms of embedded
functionality. In that Snippet I used the VS1053B to decode MP3 Internet broadcasts to produce a
prototype of an Internet Radio. This worked extremely well so I decided to investigate another of the
VS1053B's capabilities, MIDI. It was hard for me to believe that in addition to all of the built in
decoders: Ogg Vorbis, MP3, AAC, WMA and FLAC, the VS1053B also had a General MIDI
implementation which could support a physical MIDI interface and had two banks of General MIDI
instruments along with effects like reverb.

Unfortunately the VS1053B module I bought (see Figure One) did not allow for easily connecting a
physical MIDI interface but I found out in my investigation that MIDI could still be supported
programmatically which is the technique I pursued here.

My initial MIDI prototype used the MIDI software interfaces I coded up for the VS1053B to just play
sequential notes of a specified instrument. While this proved the MIDI interfaces were working, it was
kind of boring so my second prototype, which I present here, plays Beethoven's Fur Elise in its entirety.
This is a much more satisfying demo in my estimation.

The pushbutton switch used in the Internet Radio snippet to change radio stations is used here to
change the instrument the song plays in. Every time this pushbutton is clicked Fur Elise starts over but
is played with a different MIDI instrument. There are 127 instruments available plus multiple drum
kits.

The code provided with this snippet uses just a small portion of the MIDI functionality provided by the
VS1053B module but it should be enough to get you going on projects of your own.

Hardware

I used a proto board for wiring up the MIDI prototype as shown in Figure Two. Jumper wires were
used for all connections. The table below shows all of the pertinent connections.

NodeMCU
Amica

VS1053B
Module

Instrument
Advance

PB Switch

Function

D1 DREQ VS1053B data ready

D2 RST VS1053B reset pin

D3 PB1 Instrument advance pushbutton pin

D4 xDCS VS1053B data chip select

Page 171

Snippet #2 ESP8266 & VS1053B MIDI

NodeMCU
Amica

VS1053B
Module

Instrument
Advance

PB Switch

Function

D5 SCK SPI clock

D6 MISO SPI data interface

D7 MOSI SPI data interface

D8 xCS VS1053B command chip select

Gnd Gnd PB2 Ground connection

Vin 5V Power connection

The circuit is powered via the USB connection to my computer; the same one used for programming. I
used headphones for listening to the MIDI playback but a power amplifier could be connected instead
if you want to drive speakers. Some of the MIDI instruments provided by the VS1053B module sound
surprisingly good, others not so much.

I should point out that this is exactly the same hardware configuration used in the Internet Radio
Snippet. That is, you can have Internet Radio or MIDI playback by just changing the code loaded into
the ESP8266 module all without moving a single wire. Amazing huh?

Software

The software for the MIDI demo is comprised of the four files described below:

File Function

ESP8266_VS1053_MIDI.ino This code creates an instance of and initializes the Midi class
for operation. All MIDI functions are called via the created
instance. The setup() function in the code initializes SPI and
then initializes the midiDriver for operation. The loop()
function in the sketch reads the pushbutton switch to see if it
is active and then increments the tickCount which controls
playback timing. See text for details. The loop() function is
also responsible for reading data from the network and
sending it to the ESP8266.

FurEliseData.h This is the song data for Fur Elise by Beethoven contained in
a rather large array. Each note to be played is represented by a
pair of integer values. The first value of the pair is a tick count
which determines when the note should sound and the second
value of the pair is the MIDI note number to sound. There are
10 notes defined per line in this file and the double zeros at the

Page 172

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

File Function

end of the array signify the end of the song.

Midi.h This file defines a MIDI subclass derived from the VS1053
class. Its init() function initialized the VS1053B chip and then
loads a plugin that enables the MIDI functionality. Common
MIDI software interfaces like noteOn, noteOff, setInstrument,
etc. are defined in this file.

VS1053.h This is the driver for the VS1053B chip. It manages the low
lever SPI interface for interfacing to the chip. There are
routines for reading and writing the chip's registers, for
verifying a VS1053 is connected to the ESP8266 module, for
starting and ending playback, for transferring audio data to the
chip and for controlling playback volume.

Due to space limitations I cannot go into MIDI in detail here so if you are not familiar with what MIDI
is or how it works you might check out: https://en.wikipedia.org/wiki/MIDI or just do a search on the
Internet for MIDI information. There are hundreds (thousands ?) of websites out there that can help you
understand MIDI.

In brief MIDI itself does not contain any sound but is a digital interface that commands MIDI devices
to produce sound when they receive MIDI messages. These messages are comprised of up to three
bytes of information consisting of a status byte, which indicates the type of the message, followed by
up to two data bytes containing parameters. MIDI messages can be channel messages, which are sent
on only one of the 16 channels and can be heard only by devices receiving on that channel, or system
messages, which are heard by all devices. There are five types of messages: Channel Voice, Channel
Mode, System Common, System Real-Time and System Exclusive.

The VS1053B MIDI implementation requires that each byte of a MIDI message be delimited with a
byte of zeros before being sent to the hardware. Don't ask me why. This is accomplished automatically
in the midiWrite function from the midi class and shown below.

// Write Midi command via SDI

// a command byte

// b is operand byte

// optional 2nd operand

void midiWrite(byte a, byte b, byte c = 0) {

 // Buffer sized to pad bytes with 0's

 byte buffer[6];

 memset(buffer, 0, 6);

 buffer[1] = a;

Page 173

Snippet #2 ESP8266 & VS1053B MIDI

 buffer[3] = b;

 buffer[5] = c;

 sendBytesSDI(buffer, 6);

}

As you can see the third parameter, C, defaults to zero if it is not specified in the functions which call
midiWrite. The function sendBytesSDI is defined in the VS1053B driver and it sends the six bytes of
data to the VS1053B via SPI.

As an example, the noteOn MIDI function calls midiWrite to send a noteOn message. Its code is as
follows:

// Midi note on message

// chan is channel to play note on

// note is the Midi note to play

// velocity is how loud to play the note

void noteOn(byte chan, byte note, byte velocity) {

 midiWrite(MIDI_NOTE_ON | chan, note, velocity);

}

All other MIDI functions are defined in a similar manor.

Playing a song is a lot more complicated that playing a single MIDI note. Playing a song requires
timing information in addition to which notes to play. In the MIDI demo provided here, the Fur Elise
song data is broken up into timing and note data and then sent to the VS1053B for rendering as music.
The following discussion describes how this is accomplished.

The loop() function in the ESP8266_VS1053_MIDI.ino sketch is called over and over at a very fast
rate. Every time through the loop a check is made to see if the nextTickTime has expired, and if so the
tickCount variable is incremented and a new nextTickTime value is calculated from the current system
millisecond count plus the MILLISECONDS_PER_TICK constant. This constant controls the song
playback speed and by default is set to 10 milliseconds/tick. Smaller values of this constant speed
playback up and larger values slow playback down.

Every time the tickCount variable is incremented the playSongNote() function is called to determine if
it is time to play the next note of the song. As previously mentioned the song data is made up of
tick/note pairs. The playSongNote function looks to see what the current note's tick count is and
compares that to the tickCount passed in. If the tick time of the note has not yet occurred nothing
happens. If, however, the time has come to play the note, the note's MIDI value is fetched from the
song data and a noteOn MIDI message with the note's value and DEFAULT_VELOCITY is sent to the
VS1053B for playback. This process continues on a note by note basis until a tick time of zero is read
from the song's data signifying the end of the song.

The playSongNote function restarts song playback when the song ends.

Page 174

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

Conclusions

The MIDI implementation within the VS1053B may not compare to a Roland Synthesizer but it is
more than adequate for experimentation with MIDI. Given the fact that it comes for free inside of a
chip you probably purchased for audio decoding and playback is a real bonus. The ESP8266 and
VS1053B combination could be used to add musical playback into projects such as music boxes,
kiosks, etc. If nothing else it is fun to tease this functionality out of the surprisingly powerful VS1053B
chip.

Page 175

Snippet #2 ESP8266 & VS1053B MIDI

Figure One

The VS1053B Module

One of many varieties that should work.

Page 176

Craig A. Lindley's Micro Controller Projects – Volume 1 - ESP8266

Figure Two

The working breadboard of VS1053B MIDI

Based on the exact same hardware as the Internet Radio described previously

The pushbutton switch on the right is used to change MIDI instruments on the fly

Page 177

Snippet #2 ESP8266 & VS1053B MIDI

Page 178

