
Arduino Controlled Digital FM Radio – Craig A. Lindley – 12/2013

Introduction
I'm always on the lookout for cool new (at least new to me) hardware components that I might
incorporate into one of my electronic/computer projects. Recently while shopping online at
SparkFun.com I came across an evaluation board for a digital FM receiver about the size of a postage
stamp that sparked (no pun intended) my interest. Having grown up listening to FM radio I thought it
would be fun to build an FM receiver of my own design. While this may be seen by many to be a very
retro project what with Internet radios, music players and smart phones surrounding us, it has turned
out to be quite useful. Now I have a remote controllable FM radio that I listen to with headphones
while I am working. It sets on my desk along side the Desktop Contemplator and the Unique Digital
Clock that I have written about previously. My desk is becoming cluttered with all the useful projects I
have designed and built.

While I listen to my FM radio/receiver with headphones it can just as easily be plugged into a stereo
amp with speakers to provide sound for a whole room. The fidelity of this receiver is quite good when
tuned to strong FM stations. Because of its compact size you could even incorporate this FM receiver
into a boom box of your own design.

This project can be built by anyone with basic electronic assembly and schematic reading experience.
The software is somewhat complex but is made simpler by the use of pre-existing libraries for the
major hardware components. The Arduino Uno sketch (program) for this FM receiver project is
available on the Nuts and Volts website. Because you have access to the source code you can make
changes to the design and/or add new features to the receiver. If you come up with a cool new feature
please send me the code at calhjh@gmail.com so I can incorporate it into my receiver/radio as well.

Let's begin by discussing the hardware. Software will be discussed a little later.

Hardware
The hardware is built around an Arduino Uno board running at 16 MHz and 5 volts. I've been finding
these boards on eBay for around $13 each so I bought a few. Other Arduino's could be used but some of
the I/O pin assignments might need to change. Using an Arduino running at a different clock speed will
also impact the design especially in the IR (Infra Red) detection area. None of these problem are
insurmountable but you will be in uncharted territory if you deviate from the design presented here.

I initially planned to have physical controls on the FM receiver. A power switch, a rotary encoder for
channel selection and a couple of push buttons for mode selection but I quickly realized that I would
then need physical proximity to the receiver to manipulate it. I then thought adding IR remote control
would be interesting but soon realized that if I added remote control the other physical controls would
be redundant and unnecessary. In the end I decided to go the no control route so all of the receiver's
functionality is controlled through an IR remote. Quite convenient really.

While not technically a control, there is a contrast adjustment for the LCD display which should be set
once and left alone. I used a 10 turn, screw driver adjustable trimmer but any 10K to 20K ohm
potentiometer could be used in its place.

Page 1

Arduino Controlled Digital FM Radio – Craig A. Lindley – 12/2013

The parts list for this project is in shown in Figure One and a schematic of the hardware is shown in
Figure Two. I built my radio using point to point wiring (can you say rats nest ?) but a prototyping
shield could be used for a cleaner build.

The LCD display provides a 4 bit parallel data interface to the Arduino while the Si-4703 FM receiver
is connected to the Arduino via an i2c interface. Since the Arduino Uno is a 5 volt part and the FM
receiver is a 3.3 volt part, a bi-directional level converter must be used between them.

The LCD display runs on 5 volts. The backlight for the LCD display is directly controlled by an output
pin from the Arduino.

The stereo audio output cable is used as the antenna for the FM receiver so you must pay attention to
the length of the interconnect. The cord on the headphones I use works fine as an antenna as I can pick
up all of the FM stations in my area. When strong stations are tuned in, the audio quality is top notch.
When the receiver is receiving a stereo broadcast, the yellow stereo indicator LED lights up. Weaker
stations are received in mono and the stereo indicator remains dark. A red, power on, LED lights when
the radio is on.

An IR receiver (which is what Radio Shack calls it) is used to detect IR codes from the remote control.
It filters out the 38 KHz IR carrier frequency from the received signal thereby making detection of the
key codes more straight forward.

The radio is powered via a USB cable and a USB power supply. Alternatively the radio can be powered
by connection to a USB port on your computer. There is no power switch. If you want to power off the
radio, unplug the USB cable and/or power supply.

Wiring and wire routing for this project are non-critical. Be advised that as with all digital circuitry
keeping the wires as short as possible/practical is always a good idea. Using a consistent color scheme
for the wires is also a good idea. I used red for 5 volts, white for 3.3 volts and black for all ground
connections. Various other wire colors are used for data and clock signals.

Packaging

I packaged my radio using two 4”x6” pieces of clear 1/8” acrylic plastic in a sandwich like
arrangement held together by wooden 1 1/2” dowel spacers in the corners. I like the naked electronics
look. The LCD display is mounted to the front acrylic piece and the Arduino Uno and receiver board
are mounted to the rear piece. The finished radio is free standing with this packaging approach. See the
photos for details.

Software
All of the radio's software was developed using the Arduino IDE (Integrated Development
Environment) version 1.0.5 for OSX. Windows versions of the IDE are available if that is your chosen

Page 2

Arduino Controlled Digital FM Radio – Craig A. Lindley – 12/2013

computing environment. Make sure you have the Board type set to Arduino Uno and the Serial Port set
appropriately in the IDE. Of course you will need to plug the receiver's Arduino Uno into your
computer via a USB cable to download the provided firmware via the IDE.

Three libraries are used in this project to ease the software development task. The Liquid Crystal
library which comes standard with the Arduino IDE, an IR remote library for IR code detection and a
library for controlling the Si-4703 digital FM receiver. The Resources section has pointers/links as to
where these libraries can be obtained.

The Liquid Crystal library is preinstalled when you download the IDE so you need not do anything else
to use it other than including LiquidCrystal.h in your sketches. To install the IRremote library you must
first unzip the downloaded IRremote library file somewhere on your computer and then copy its
contents to your arduino\libraries directory. Finally, rename the Arduino-IRremote-master directory to
IRremote and you should be good to go.

Installing the Si-4703_Breakout library is similar. First download the library, unzip it, copy its contents
to the arduino\libraries directory and then rename the directory called Arduino-Si4703-Library-libcode-
only to Si4703_Breakout.

The Arduino IDE must be shut down while installing new libraries. Once restarted the IDE should pick
up any newly installed libraries. You can check for proper installation by clicking Examples from the
File menu. There you should see an IRremote entry with a bunch of example sketches along with a
Si4703_Breakout entry with its example sketch.

Whereas the Liquid Crystal and the IRremote libraries can be used as is, the Si4703_Breakout library
must be modified before being used in our application. This library was not built with the idea that
someone might want to extend it with functionality the library didn't directly provide. For our
application I needed the ability to mute/unmute the FM receiver and to poll the stereo reception
indicator, functionality the library doesn't provide. Luckily the change to the library is trivial and only
involves editing the header file, Si4703_Breakout.h. Again the Arduino IDE must be shut down while
editing is being performed. Bring up the file, Si4703_Breakout.h, in a text editor of some kind. On my
MAC I use TextEdit; on Windows you could us Notepad.

The change involves moving the following entries from the private section of the interface definition
up to the public section. Once you have moved these four lines of text, save the file and we should be
ready to go.

void readRegisters();

byte updateRegisters();

int getChannel();

uint16_t si4703_registers[16]; //There are 16 registers, each 16 bits large

With this change we are able to extend the functionality of the Si4703 library as required for our
application.

Page 3

Arduino Controlled Digital FM Radio – Craig A. Lindley – 12/2013

Software Overview

You may want to consult the DigitalFMRadio.ino sketch during the discussion to follow.

The sketch is broken up into numerous sections for organizational purposes. At the top of the sketch are
the global definitions followed by the hardware definitions where all of the I/O pins for the radio are
assigned. Following that there are sections for the major hardware elements of the design in the
following order: IR Receiver , the LCD display, the SI-4703 FM receiver, EEPROM and finally
miscellaneous functions. Following that are the setup() and loop() Arduino functions.

In the IR receiver section an instance of IRrecv called IrReceiver is declared and assigned the
IR_RECEIVER_PIN defined earlier. This assignment connects the IR receiver hardware to the
software that will manage it. Next, the IR remote control key codes for the AdaFruit remote (see Figure
Three) are declared. I listed all of the key codes available from the remote control not just the ones used
in this sketch. Finally, two convenience functions are defined which wrap functions in the IR receiver
library for our ease of use.

In the LCD section an instance of LiquidCrystal called lcd is defined and it is passed the hardware I/O
pins used in this design. Again this connects the hardware to the managing software. A single function
is then defined that will clear a specified row of the LCD display when called.

The SI-4703 section is a little more complicated in that we have to extend the functionality of the
Si4703_Breakout library. First though, an instance of the library is created called radio that is passed
the I/O pins used in this design. The Si-4703 FM receiver is controlled using a series of 16 16 bit
registers. In a typical operation the registers are read from the chip, values are changed and the updated
register values are sent back causing the receiver chip to react. The function updateStereoIndicator is a
little different in that we are only polling the status of the receiver to determine if a stereo signal is
being received to determine if the stereo indicator LED should be lit or not. In the muteRadio function
we read the registers, set or clear the DMUTE bit depending upon whether or not we are muting and
then send the modified registers back to the chip.

The EEPROM section has functions for reading and writing 8 and 16 bit unsigned integers from the
EEPROM contained within the Arduino's processor. Values written to the EEPROM survive loss of
power and will be available indefinitely until changed.

The Miscellaneous section has functions for displaying the FM station frequency on row 0 of the LCD
display, for displaying row 1 messages on the LCD display, for retrieving and storing FM station
presets and for processing presets. The processSetPreset function waits for a IR key to be pressed on
the remote control and then stores the channel/station that is currently being listen to in a corresponding
preset in EEPROM.

The Arduino setup() function prepares the hardware for operation. Here, the backlight, the power on
and the stereo LED control pins are configured as outputs. The IR receiver is enabled, the LCD display
is configured for 16 character by 2 row operation, some volume and channel defaults are installed and
the EEPROM is prepared for use.

To prevent bogus preset values from being used I wanted to do a one time initialization of the
EEPROM setting each preset value storage location to zero. To make sure this is only done once, the
code looks for a signature in the first two bytes of the EEPROM. If the signature is not found the two
byte signature 0xAA, 0x55 is written and all 10 preset locations are set to zero. If the signature is

Page 4

Arduino Controlled Digital FM Radio – Craig A. Lindley – 12/2013

found, which is usually the case, EEPROM initialization is skipped.

The Arduino loop() function is where the radio is controlled. It consists of a large switch statement that
is driven by the key codes received from the remote control. The table below details which keys do
what.

Key Function

Vol- Mutes the audio

Play Pause Turns the radio off and on

Vol+ Un-mutes the audio

Up Arrow Volume Up

Down Arrow Volume Down

Left Arrow Scan Down for a station/channel

Right Arrow Scan Up for a station/channel

Enter Save Sets up for saving a preset. Tune in the desired
station, press Enter Save and then a key 1 .. 9 to

save the station as a preset.

Keys 1 .. 9 Tunes station if preset set, otherwise does nothing

It is important to note that when power is applied to the radio it appears to be off though it really isn't.
Instead, the firmware is constantly looking for the Play Pause key code to be received to virtually turn
the radio on. A variable called radioOn tracks whether the radio is off or on. The processing of all key
codes is conditional on this variable as I didn't want the radio responding to commands while it was
supposed to be off. Most cases have similar structure. First the radioOn variable is check and if the
radio is on, a function is performed and a message is written to the LCD display. If radioOn is false, the
received key code is ignored. Processing of the Play Pause key is the most complex as numerous steps
are necessary to virtually turn the radio off or on. The comments in the code should make it clear what
is happening.

The cases used for retrieving a preset should be mentioned. There are 9 presets available numbered 1
through 9. When a preset key on the remote is clicked, the corresponding preset is retrieved from the
EEPROM and its value is examined. If a value of zero is returned, the preset has never been set so the
radio does not respond. If however a non zero value is returned, that channel is set.

Preset 10 is a special case. When the radio is virtually turned off, the channel that was being listened to
is written to preset 10. Then, when the radio is virtually turned back on, preset 10 is read and that
station/channel is reinstated.

Page 5

Arduino Controlled Digital FM Radio – Craig A. Lindley – 12/2013

Conclusions
Building your own FM receiver is cool and easy even if listening to over the air FM radio seems retro.

Resources
The following sites may be of interest to those seeking more information on the topics described in this
article.

Information about the Si-4703 digital FM receiver can be found at the manufactures website at:
www.silabs.com. AN230, AN231, AN243 are application notes concerning the Si-470x series parts.
AN332 provides example code useful for programmers.

The free Arduino IDE development tool for Windows, OSX and Linux are available at:
http://arduino.cc/en/Main/Software.

The IRremote library is available at: github.com/shirriff/Arduino-IRremote. There is a Download ZIP
button in the lower right side of this page. Click it to get the library.

The Si4703_Breakout library is available at: github.com/infomaniac50/Arduino-Si4703-Library. Again,
click the Download ZIP button to get the library.

The Arduino sketch described in this article is available from the Nuts and Volts website and is called
DigitalFMRadio.ino.

An AmForth version of the firmware is also available. Contract the author for details.

Page 6

Arduino Controlled Digital FM Radio – Craig A. Lindley – 12/2013

Figure One
Parts List

Item Part Number/Description Source

Arduino Uno 16Mhz 5 volt part SparkFun, AdaFruit, Radio
Shack, eBay

Bi-directional Level Converter BOB-12009 SparkFun

Evaluation Board for Si4703 FM
Tuner

WRL-10663 SparkFun

16x2 line LCD display Any LCD noted to be Arduino
compatible should work.

SparkFun, AdaFruit, eBay

IR Receiver #2760640 Radio Shack

Red LED many anywhere

Yellow LED many anywhere

2 x 300 ohm ¼ w resistor many anywhere

10K ohm 10 turn trimmer many anywhere

2 x 10 uF @ 25V capacitor many anywhere

Mini Remote Control ID: 389 AdaFruit

USB cable
for Arduino to USB power

supply connection

many SparkFun, AdaFruit, Radio
Shack, eBay

USB power supply
500 mA or greater

many SparkFun, AdaFruit, Radio
Shack, eBay

.1” male break away header pins
for Arduino connectors

many SparkFun, AdaFruit, eBay

Wire, solder, packaging, etc

Page 7

Arduino Controlled Digital FM Radio – Craig A. Lindley – 12/2013

Figure Two
Schematic Diagram

Page 8

16x2
LCD

Vss

Vcc

Vo

RS

R/W

E
DB0

DB1
DB2
DB3

DB4
DB5

DB6
DB7

LED+

LED-

Arduino FM Receiver with LCD Display

Designed by: Craig A. Lindley Date: 12/15/2013

Version: 1.0

Bi-Directional
Level

Converter
BOB-12009

Si-4703
Digital

FM
Radio

Receiver
WRL-10663

Arduino Uno
16 MHz
5V Part

HV1

HV2

HV3

LV1

LV2

LV3

GNDGND

HV LV

3.3V 5V

GND

3.3V

GND

A4

SDIO

A5

SDIO

SCLK

SCLK

2
PD2

RST

Stereo Audio Output
jack on board

Contrast Adjustment

10K Ohm Trimmer

Power On Indicator

Stereo Indicator

IR
Receiver
2760640

Out
V5

GND

1

2

3

PB0
8

PB1
9

PB2
10

11

12

13

PD3 3

PB3
PB4

PB5

red

yellow

PD6

6

4

PD4

USB Power Connector

3

7

5

6

8

1

16

300 ohm

300 ohm
LED

LED

10 uF 25V

10 uF 25V

Arduino Controlled Digital FM Radio – Craig A. Lindley – 12/2013

Figure Three
IR Mini Remote Control

Page 9

Arduino Controlled Digital FM Radio – Craig A. Lindley – 12/2013

Photo One
Three Components – LCD, Arduino Uno and Receiver Board

Page 10

Arduino Controlled Digital FM Radio – Craig A. Lindley – 12/2013

Photo Two
Receiver Board Close Up

At the top is the Si-4703 evaluation board with the black 1/8” stereo output jack, in the middle is the IR
receiver facing upward along with some filter caps, towards the bottom is the four channel level

converter, the yellow rectangular LED is the stereo indicator and the red LED is the power on indicator

Page 11

Arduino Controlled Digital FM Radio – Craig A. Lindley – 12/2013

Photo Three
The Working Receiver in its prototype packaging

On the left is the USB cable powering the receiver. On the right I have my headphones plugged onto
the receiver. The contrast adjusting trimmer can be seen on the left top of the LCD display.

Page 12

